Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Richardson, Sylvia
Автор Gilks, Walter R.
Дата выпуска 1993
dc.description Risk factors used in epidemiology are often measured with error which can seriously affect the assessment of the relation between risk factors and disease outcome. In this paper, a Bayesian perspective on measurement error problems in epidemiology is taken and it is shown how the information available in this setting can be structured in terms of conditional independence models. The modeling of common designs used in the presence of measurement error (validation group, repeated measures, ancillary data) is described The authors indicate how Bayesian estimation can be carried out in these settings using Gibbs sampling, a sampling technique which is being increasingly referred to in statistical and biomedical applications. The method is illustrated by analyzing a design with two measunng instruments and no validation group. Am J Epidemiol 1993; 138.430–42
Формат application.pdf
Издатель Oxford University Press
Копирайт © 1993 by The Johns Hopkins University School of Hygiene and Public Health
Тема biometry
Тема Bayesian method
Тема epidemiologic methods
Тема Monte Carlo method
Тема ORIGINAL CONTRIBUTIONS
Название A Bayesian Approach to Measurement Error Problems in Epidemiology Using Conditional Independence Models
Тип research-article
Electronic ISSN 1476-6256
Print ISSN 0002-9262
Журнал American Journal of Epidemiology
Том 138
Первая страница 430
Последняя страница 442
Аффилиация Richardson Sylvia; Unité 170, Institut National de la Santé et de la Recherche Médicale
Аффилиация Gilks Walter R.; Medical Research Council, Biostatistics Unit, Cambridge
Выпуск 6

Скрыть метаданые