Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Pouget, Alexandre
Автор Dayan, Peter
Автор Zemel, Richard S.
Дата выпуска 2003
dc.description ▪ Abstract  In the vertebrate nervous system, sensory stimuli are typically encoded through the concerted activity of large populations of neurons. Classically, these patterns of activity have been treated as encoding the value of the stimulus (e.g., the orientation of a contour), and computation has been formalized in terms of function approximation. More recently, there have been several suggestions that neural computation is akin to a Bayesian inference process, with population activity patterns representing uncertainty about stimuli in the form of probability distributions (e.g., the probability density function over the orientation of a contour). This paper reviews both approaches, with a particular emphasis on the latter, which we see as a very promising framework for future modeling and experimental work.
Формат application.pdf
Издатель Annual Reviews
Копирайт Annual Reviews
Название INFERENCE AND COMPUTATION WITH POPULATION CODES
DOI 10.1146/annurev.neuro.26.041002.131112
Print ISSN 0147-006x
Журнал Annual Review of Neuroscience
Том 26
Первая страница 381
Последняя страница 410
Аффилиация Pouget, Alexandre; Department of Brain and Cognitive Sciences, Meliora Hall, University of Rochester, Rochester, New York, 14627; email: alex@bcs.rochester.edu

Скрыть метаданые