Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор DANIEL, THORBURN
Дата выпуска 1986
dc.description Assume a priori that the log density is a sample function from a Gaussian process subject to the condition that the density integrates to one. The posterior distribution given a number of observations is then still a Gaussian process with the same condition and the same covariance function. The mean value function is changed according to a simple formula. This prior may thus be regarded as a conjugate prior for an unknown density. The mode of the posterior distribution is given implicitly by a simple formula, which can be solved numerically. The mode is a close approximation to the optimal estimate with squared error loss in the discrete case. Some examples with data are given.
Формат application.pdf
Издатель Oxford University Press
Копирайт / 1986 Biometrika Trust
Тема Conjugate prior
Тема Gaussian process
Тема Multinomial probability
Тема Articles
Название A Bayesian approach to density estimation
Тип research-article
Electronic ISSN 1464-3510
Print ISSN 0006-3444
Журнал Biometrika
Том 73
Первая страница 65
Последняя страница 75
Аффилиация Department of Statistics, University of StockholmS-1138i5 Stockholm, Sweden
Выпуск 1

Скрыть метаданые