Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Lowthian, Philip J.
Автор Thompson, Michael
Дата выпуска 2002
dc.description Kernel density estimation is a method for producing a smooth density approximation to a dataset and avoiding some of the problems associated with histograms. If it is used with a degree of smoothing determined by a fitness for purpose criterion, it can be applied to proficiency test data in order to test for multimodality in the z-scores. The bootstrap is an essential additional technique to determine how rugged the initially estimated kernel density is: the random resampling of the data in the bootstrap simulates a complete blind repeat of the proficiency test. In addition, useful estimates of the standard error of a mode can be thus obtained. It is suggested that a mode and its standard error can be used as an assigned value and its standard uncertainty.
Формат application.pdf
Издатель Royal Society of Chemistry
Название Bump-hunting for the proficiency tester—searching for multimodality
Тип research-article
DOI 10.1039/b205600n
Electronic ISSN 1364-5528
Print ISSN 0003-2654
Журнал Analyst
Том 127
Первая страница 1359
Последняя страница 1364
Аффилиация Lowthian Philip J.; School of Biological and Chemical Sciences, Birkbeck College (University of London)
Аффилиация Thompson Michael; School of Biological and Chemical Sciences, Birkbeck College (University of London)
Выпуск 10
Библиографическая ссылка Thompson, Pure Appl. Chem., 1993, 65, 2123
Библиографическая ссылка R. E. Lawn , M.Thompson and R. F.Walker, Proficiency Testing in Analytical Chemistry, The Royal Society of Chemistry, Cambridge, UK, 1997
Библиографическая ссылка J. A. Rice , Mathematical Statistics and Data Analysis, Duxbury Press, Belmont CA, 2nd edn., 1996, pp. 321–328
Библиографическая ссылка B. W. Silverman , Density Estimation for Statistics and Data Analysis, Chapman and Hall, London, 1986
Библиографическая ссылка Cofino, Chemom. Intell. Lab. Syst., 2000, 53, 37
Библиографическая ссылка B. Efron and R. J.Tibshirani, An Introduction to the Bootstrap, Chapman and Hall, 1993, London, 1986
Библиографическая ссылка Methods Committee, Analyst, 1989, 114, 1693

Скрыть метаданые