Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Fairlie, Roger
Автор Griffiths, John F.
Дата выпуска 2001
dc.description The existence and spatial development of gas-phase, thermokinetic oscillations under the influence of mass and thermal diffusion have been investigated by numerical methods in a 1-dimensional system. The conditions correspond to those that would be experienced under microgravity. The interest arises because there have been recent experimental investigations of oscillatory reactions, involving cool flames during butane oxidation, as part of the NASA, KC135 microgravity flight programme. The Sal'nikov, thermokinetic scheme, which is a two-variable model representing an intermediate chemical species and reactant temperature (taking the form P â A â B), forms the basis of the present work. In this model, thermal feedback occurs through the exothermicity of the second step and the non-linearity is derived from its temperature dependence. There are no known chemical examples that satisfy Sal'nikov's formal structure but Griffiths and co-workers conceived an experimental analogue under terrestrial conditions whereby a gaseous reactant was allowed to flow from an external reservoir into a closed, heated reactor at a controlled rate .italv;ia a capillary tube which fed the reactant to the centre of the vessel. The exothermic reaction that occurred in the vessel satisfied the necessary conditions for the second step and the inflow, with no temperature dependence, represented a physical analogue to the first step of the Sal'nikov scheme. Thermokinetic oscillations were observed and the range of conditions for their existences was investigated. One of the experimental systems was the exothermic reaction between hydrogen and chlorine. To represent the Sal'nikov conditions hydrogen was fed slowly into the reactor, which already contained chlorine. We have exploited this chemical system and its experimental implementation in the present paper to investigate the behaviour when no convection or bulk gas motion occurs and when heat and mass transport is driven solely by diffusion. We study the response of alternative numerical approaches to the way in which the first step of the scheme is simulated. In the first, the precursor (P) is supplied at the same rate simultaneously throughout the cells representing the reactor. This is close to the concept of the Sal'nikov model. In the second method, a fixed rate of supply is applied at the inner boundary of the axisymmetric, 1-dimensional system. This is analogous to the experimental procedure. The numerical results show how oscillatory states can be sustained as a result of heat and mass transport by diffusion. The temporal and spatial evolution of reaction in a range of circumstances is discussed.
Формат application.pdf
Издатель Royal Society of Chemistry
Название A numerical study of spatial structure during oscillatory combustion in closed vessels in microgravity
Тип research-article
DOI 10.1039/b103243g
Electronic ISSN 1364-5498
Print ISSN 1359-6640
Журнал Faraday Discussions
Том 120
Первая страница 147
Последняя страница 164
Аффилиация Fairlie Roger; School of Computing, The Uni.italv;ersity
Аффилиация Griffiths John F.; School of Chemistry, The Uni.italv;ersity
Библиографическая ссылка J. F. Griffiths, S. K. Scott, Prog. Energy Combust. Sci., 1987, 13, 161
Библиографическая ссылка P. Gray, J. F. Griffiths, K. Kishore, Combust. Flame, 1974, 22, 197
Библиографическая ссылка J. F. Griffiths, Prog. Energy Combust. Sci., 1995, 21, 25
Библиографическая ссылка P. Gray, J. F. Griffiths, R. J. Moule, Faraday Symp. Chem. Soc., 1974, 9, 103
Библиографическая ссылка J. F. Griffiths, P. Gray, B. F. Gray, Proc. Combust. Inst., 1971, 13, 239
Библиографическая ссылка H. Pearlman, Combust. Flame, 2000, 121, 390
Библиографическая ссылка R. Fairlie, J. F. Griffiths, H. Pearlman, Proc. Combust. Inst., 2000, 28, 1693
Библиографическая ссылка B. F. Gray, C. H. Yang, J. Phys. Chem., 1965, 69, 2747
Библиографическая ссылка C. H. Yang, B. F. Gray, J. Phys. Chem., 1969, 73, 3395
Библиографическая ссылка B. F. Gray, C. H. Yang, Trans. Faraday Soc., 1969, 65, 1614
Библиографическая ссылка I. E. Sal'nikov, Dokl. Akad. Nauk. SSSR, 1949, 60, 405 and 611
Библиографическая ссылка I. E. Sal'nikov, Zh. Fiz. Khim., 1949, 2, 258
Библиографическая ссылка P. Gray, S. R. Kay, S. K. Scott, Proc. R. Soc. London, Ser. A, 1988, 416, 321
Библиографическая ссылка B. F. Gray, M. J. Roberts, Proc. R. Soc. London, Ser. A, 1988, 416, 391
Библиографическая ссылка P. Gray, J. F. Griffiths, S. R. Kay, S. K. Scott, Proc. Combust. Inst., 1989, 22, 1597
Библиографическая ссылка P. Gray, J. F. Griffiths, Combust. Flame, 1989, 78, 87
Библиографическая ссылка D. P. Coppersthwaite, J. F. Griffiths, B. F. Gray, J. Phys. Chem., 1991, 95, 6961
Библиографическая ссылка J. F. Griffiths, C. H. Phillips, Combust. Flame, 1990, 81, 304
Библиографическая ссылка S. K. Scott, J. Wang, K. Showalter, J. Chem. Soc., Faraday Trans., 1997, 93, 1733
Библиографическая ссылка J. Brindley, J. F. Griffiths, A. C. McIntosh, Chem. Eng. Sci., 2001, 56, 2037
Библиографическая ссылка S. V. Pennington, M. Berzins, ACM Trans. Math. Software, 1994, 20, 63
Библиографическая ссылка M. Berzins, Appl. Numer. Anal., 1986, 2, 109
Библиографическая ссылка R. D. Skeel, M. Berzin, SIAM J. Sci. Stat. Comput., 1990, 11, 1
Библиографическая ссылка B. Van Leer, J. Comput. Phys., 1990, 14, 361

Скрыть метаданые