Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Fu, Yao
Автор Lin, Bo-Lin
Автор Song, Ke-Sheng
Автор Liu, Lei
Автор Guo, Qing-Xiang
Дата выпуска 2002
dc.description Density function UB3LYP/6-311++g(d,p) and perturbation theory ROMP2/6-311++g(d,p) calculations were performed on 4-substituted thiophenols and their corresponding radicals. It was found that although UB3LYP and ROMP2 methods underestimated the absolute Sâ H bond dissociation energies, they could predict almost as good relative Sâ H bond dissociation energies as a method of a considerably higher level, UCCSD(T)/6-311++g(d,p). From the calculation results it was determined that the Sâ H bond dissociation energies of thiophenols should have a positive correlation with the substituent Ï p<sup>+</sup> constants whose slope was ca. 2.5 kcal mol<sup>â 1</sup>. Such a slope indicated that the experimental Sâ H bond dissociation energies obtained from a previous solution phase measurement were reasonably accurate for para H, CH3, OCH3, Cl, and NO2 substituted thiophenols. However, the solution phase bond dissociation energy for 4-aminothiophenol was too low, which was found by the calculation in this study to be caused by the hydrogen bonding between the amino group and the solvent molecules. Finally, through the studies on the isodesmic reactions it was found that the substituent effects on the stability of neutral thiophenols had a fair and positive correlation with the substituent Ï p<sup>+</sup> constants; the slope was 0.5 kcal mol<sup>â 1</sup>. On the other hand, the substituent effects on the stability of thiophenol radicals had an excellent and negative correlation with the substituent Ï p<sup>+</sup> constants and gave a slope of â 1.8 kcal mol<sup>â 1</sup>. Therefore, the major source of the substituent effects on Sâ H bond dissociation energies of thiophenols was the stability of the homolysis products, namely, thiophenol radicals.
Формат application.pdf
Издатель Royal Society of Chemistry
Название Substituent effects on the S–H bond dissociation energies of thiophenolsElectronic supplementary information (ESI) available: detailed results of the bond lengths, charge and spin distributions, and vibration frequencies. See http://www.rsc.org/suppdata/p2/b2/b201003h/
Тип research-article
DOI 10.1039/b201003h
Electronic ISSN 1364-5471
Print ISSN 0300-9580
Журнал Journal of the Chemical Society, Perkin Transactions 2
Первая страница 1223
Последняя страница 1230
Аффилиация Fu Yao; Department of Chemistry, University of Science and Technology of China
Аффилиация Lin Bo-Lin; Department of Chemistry, University of Science and Technology of China
Аффилиация Song Ke-Sheng; Department of Chemistry, University of Science and Technology of China
Аффилиация LiuPresent address: Department of Chemistry, Columbia University, New York, NY 10027, USA. Lei; Department of Chemistry, University of Science and Technology of China
Аффилиация Guo Qing-Xiang; Department of Chemistry, University of Science and Technology of China
Выпуск 7
Библиографическая ссылка A. Graslund, M. Sahlin, Ann. Rev. Biophys. Biomol. Struct., 1996, 25, 259
Библиографическая ссылка C. Parast, K. K. Wong, J. W. Kozarich, Biochemistry, 1995, 34, 5712
Библиографическая ссылка A. Rauk, D. Yu, D. A. Armstrong, J. Am. Chem. Soc., 1998, 120, 8848
Библиографическая ссылка A. Rauk, D. A. Armstrong, D. P. Fairlie, J. Am. Chem. Soc., 2000, 122, 9761
Библиографическая ссылка A. G. Larsen, A. H. Holm, M. Roberson, K. Daasbjerg, J. Am. Chem. Soc., 2001, 123, 1723
Библиографическая ссылка F. G. Bordwell, M. J. Bausch, J. Am. Chem. Soc., 1986, 108, 1979
Библиографическая ссылка F. G. Bordwell, X.-M. Zhang, Acc. Chem. Res., 1993, 26, 510
Библиографическая ссылка Y.-Y. Zhao, F. G. Bordwell, J.-P. Cheng, D.-F. Wang, J. Am. Chem. Soc., 1997, 119, 9125
Библиографическая ссылка J.-M. Lu, X.-Q. Zhu, Q. Li, J.-Q. He, M. Xian, J.-P. Cheng, Chem. J. Chin. Univ., 2000, 21, 570
Библиографическая ссылка F. G. Bordwell, J.-P. Cheng, J. Am. Chem. Soc., 1991, 113, 1736
Библиографическая ссылка F. G. Bordwell, X.-M. Zhang, J.-P. Cheng, J. Org. Chem., 1993, 58, 6410
Библиографическая ссылка F. G. Bordwell, X.-M. Zhang, A. V. Satish, J.-P. Cheng, J. Am. Chem. Soc., 1994, 116, 6605
Библиографическая ссылка L. J. J. Laarhoven, P. Mulder, D. D. M. Wayner, Acc. Chem. Res., 1999, 32, 342
Библиографическая ссылка T. Fox, P. A. Kollman, J. Phys. Chem., 1996, 100, 2950
Библиографическая ссылка Y.-D. Wu, C.-L. Wong, K. W. K. Chan, G.-Z. Ji, X.-K. Jiang, J. Org. Chem., 1996, 61, 746
Библиографическая ссылка Y.-D. Wu, D. K. W. Lai, J. Org. Chem., 1996, 61, 7904
Библиографическая ссылка T. Brinck, M. Haeberlein, M. Jonsson, J. Am. Chem. Soc., 1997, 119, 4239
Библиографическая ссылка D. A. Pratt, J. S. Wright, K. U. Ingold, J. Am. Chem. Soc., 1999, 121, 4877
Библиографическая ссылка J. S. Wright, E. R. Johnson, G. A. DiLabio, J. Am. Chem. Soc., 2001, 123, 1173
Библиографическая ссылка D. A. Pratt, M. I. de Heer, P. Mulder, K. U. Ingold, J. Am. Chem. Soc., 2001, 123, 5518
Библиографическая ссылка M. Jonsson, J. Lind, G. Merenyi, T. E. Eriksen, J. Chem. Soc., Perkin Trans. 2, 1994, 2149
Библиографическая ссылка C. J. Parkinson, P. M. Mayer, L. Radom, J. Chem. Soc., Perkin Trans. 2, 1999, 2305
Библиографическая ссылка D. J. Henry, C. J. Parkinson, P. M. Mayer, L. Radom, J. Phys. Chem. A., 2001, 105, 6750
Библиографическая ссылка J. F. Stanton, s, J. Chem. Phys., 1994, 101, 371
Библиографическая ссылка A. P. Scott, L. Radom, J. Phys. Chem., 1996, 100, 16502
Библиографическая ссылка N. Maung, J. Mol. Struct. (THEOCHEM)., 1999, 460, 159
Библиографическая ссылка S. F. Boys, F. Bernardi, Mol. Phys., 1970, 19, 553
Библиографическая ссылка W. M. Nau, J. Org. Chem., 1996, 61, 8312
Библиографическая ссылка W. M. Nau, J. Phys. Org. Chem., 1997, 10, 445
Библиографическая ссылка E. I. Finkelshtein, J. Phys. Org. Chem., 2001, 14, 543

Скрыть метаданые