Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Greaves, G. N.
Автор Bras, W.
Автор Oversluizen, M.
Автор Clark, S. M.
Дата выпуска 2002
dc.description New Cr X-ray absorption fine structure (XAFS) data have been combined with the results of small angle X-ray scattering (SAXS) and wide angle X-ray scattering (WAXS) experiments to probe in detail the crystallisation mechanism in cordierite (Mg2Al4Si5O18) glass doped with 0.34 mol% Cr2O3. By direct comparison with chromo-aluminate spinels (MgCr2xAl2(1â x)O4) Cr XAFS is used to determine the composition of the devitrified Cr species. This is identified as MgCr0.18Al1.82O4, which can be directly related to the Cr content in the starting glass and as a result the total crystalline volume in the fully developed ceramic is predicted to be 4%. In situ WAXS not only reveals the presence of the spinel phase but also a silica-rich stuffed quartz phase. This grows independently of the spinel and is probably nucleated from the glass surface. From our knowledge of the compositions of both crystalline phases we are able to deduce that the SAXS contrast between the surrounding glass and the spinel crystallites is 30 times greater than that between the quartz crystallites and the glass matrix, and therefore dominates the measured scattered intensity and the SAXS invariant that is derived from it. As a consequence we are able to show that the spinel crystalline volume fraction inherent in the SAXS is in close agreement with the 4% value obtained from the Cr XAFS. Furthermore in situ SAXS reveals the gradual development of the spinel particle size and shape during heat treatment. This is conducted in the super-cooled region just above the glass transition temperature, Tg. By employing a two-step annealing process nucleation can be separated from growth and from time-resolved SAXS measurements the alumino-chromate nanocrystals are found to be closely monodispersed. Over a total time course of 600 min they grow from rough crystallites to smooth spherical particles of radius 21â ±â 2 nm, with a final density of (1.2â ±â 0.4)â à â 10<sup>21</sup> m<sup>â 3</sup>. As the process of ceramic formation takes place in the viscous melt, growth is indeed found to be limited by diffusion and is complete when all the Cr is exhausted. We use this comprehensive in situ study of crystallisation in cordierite glass to demonstrate the advantages of combining SAXS, WAXS and XAFS for probing the time-resolved chemistry, the microstructure and its development from nucleation sites, that underpins the processing of nanoparticle ceramics.
Формат application.pdf
Издатель Royal Society of Chemistry
Название A SAXS/WAXS XAFS study of crystallisation in cordierite glass
Тип research-article
DOI 10.1039/b202331h
Electronic ISSN 1364-5498
Print ISSN 1359-6640
Журнал Faraday Discussions
Том 122
Первая страница 299
Последняя страница 314
Аффилиация Greaves G. N.; Department of Physics, University of Wales
Аффилиация Bras W.; DUBBLE CRG/ESRF, Netherlands Organisation for Scientific Research (NWO)
Аффилиация Oversluizen M.; DUBBLE CRG/ESRF, Netherlands Organisation for Scientific Research (NWO)
Аффилиация Clark S. M.; Synchrotron Radiation Source
Библиографическая ссылка D. R. Bridge, D. Holland, P. W. McMillan, Glass Technol., 1985, 26, 286
Библиографическая ссылка K. Watanabe, E. A. Giess, J. Am. Ceram. Soc., 1985, 68, C102, C103
Библиографическая ссылка R. W. Dupon, A. C. Tanous, M. S. Thompson, Chem. Mater., 1990, 2, 728
Библиографическая ссылка Y. Hirose, H. Doi, O. Kamigaito, J. Mater. Sci. Lett., 1984, 3, 153
Библиографическая ссылка R. R. Tummala, J. Am. Ceram. Soc., 1991, 66, 874
Библиографическая ссылка B. Andianasolo, B. Chamagnon, C. Esnouf, J. Non-Cryst. Solids, 1990, 126, 103
Библиографическая ссылка I. M. Lachman, R. D. Bagley, R. M. Lewis, Am. Ceram. Soc. Bull., 1981, 60, 202
Библиографическая ссылка A. Kisilev, R. Reisfeld, E. Greenberg, A. Buch, M. Ish-Shalom, Chem. Phys. Lett., 1984, 105
Библиографическая ссылка C. S. Hong, P. Ravindranathan, D. K. Agrawal, R. Roy, J. Mater. Sci. Lett., 1994, 13, 1361
Библиографическая ссылка W. Schreyer, J. F. Schairer, Z. Kristallogr., 1961, 60â 82, 116
Библиографическая ссылка W. Schreyer, J. P. Schairer, J. Petrol., 1961, 2, 361
Библиографическая ссылка A.G. Gregory, T. J. Veary, J. Mater. Sci., 1971, 6, 1312
Библиографическая ссылка W. Zdaniewski, J. Am. Ceram. Soc., 1975, 58, 163
Библиографическая ссылка F. Durville, B. Champagnon, E. Duval, G. Boulon, F. Gaume, A. F. Wright, A. N. Fitch, Phys. Chem. Glass., 1984, 25, 126
Библиографическая ссылка J. R. Moyer, A. R. Prunier, N. N. Hughes, R. C. Winterton, Mater. Res. Soc. Symp. Proc., 1986, 73, 117
Библиографическая ссылка C. Gensse, U. Chowdry, Mater. Res. Soc. Symp. Proc., 1986, 73, 693
Библиографическая ссылка I. W. Donald, J. Mater. Sci., 1995, 30, 904
Библиографическая ссылка J. W. Couves, J. M. Thomas, D. Waller, R. H. Jones, A. J. Dent, G. E. Derbyshire, G. N. Greaves, Nature, 1991, 354, 465
Библиографическая ссылка G. Sankar, P. A. Wright, N. Srinivasa, J. M. Thomas, G. N. Greaves, A. J. Dent, B. R. Dobson, C. A. Ramsdale, R. H. Jones, J. Phys. Chem., 1993, 97, 9550
Библиографическая ссылка L. M. Colyer, G. N. Greaves, S. W. Carr, K. K. Fox, J. Phys. Chem., 1997, 111, 10â 105
Библиографическая ссылка W. Bras, G. E. Derbyshire, A. J. Ryan, G. R. Mant, A. Felton, R. A. Lewis, C. J. Hall, G. N. Greaves, Nucl. Instrum. Methods A, 1993, 326, 587
Библиографическая ссылка J. M. Thomas, G. N. Greaves, Science, 1994, 265, 1675
Библиографическая ссылка M. Oversluizen, S. M. Clark, G. N. Greaves, Mater. Res. Soc. Symp. Proc., 1993, 307, 39
Библиографическая ссылка M. Oversluizen, S. M. Clark, W. Bras, G. N. Greaves, Supplement to â Rivista della Stazione Sperimentale del Vetroâ , 1993, XXIII, 345
Библиографическая ссылка M. Oversluizen, W. Bras, G. N. Greaves, S. M. Clark, J. M. Thomas, G. Sankar, B. Tiley, Nucl. Instrum. Methods Phys. Res. B, 1995, 97, 184
Библиографическая ссылка M. J. van der Hoek, W. Werner, P. van Zuylen, B. R. Dobson, S. S. Hasnain, J. S. Worgan, G. Luijcjx, Nucl. Instrum. Methods Phys. Res. A, 1989, 276, 381
Библиографическая ссылка P. Stephenson, G. N. Greaves, S. J. Gurman, Synchrotron Radiat. News, 1991, 4, 29
Библиографическая ссылка O. Glatter, J. Appl. Cryst., 1977, 10, 415
Библиографическая ссылка G. N. Greaves, N. T. Barrett, G. M. Antonini, F. R. Thornley, B. T. M. Willis, A. Steel, J. Am. Chem. Soc., 1989, 111, 4313
Библиографическая ссылка A. Cummings, P. Wiltzius, F. S. Bates, J. H. Rosedale, Phys. Rev. A, 1992, 45, 885
Библиографическая ссылка K. Morinaga, H. Takebe, Ber. Bunsen-Ges Phys. Chem., 1996, 100, 9, 1423

Скрыть метаданые