Автор |
Hong, Chien-Chong |
Автор |
Murugesan, Suresh |
Автор |
Kim, Sanghyo |
Автор |
Beaucage, Gregory |
Автор |
Choi, Jin-Woo |
Автор |
Ahn, Chong H. |
Дата выпуска |
2003 |
dc.description |
This paper presents a functional on-chip pressure generator that utilizes chemical energy from a solid chemical propellant to perform fluidic delivery in applications of plastic-based disposable biochips or lab-on-a-chip systems. In this functional on-chip pressure generator, azobis-isobutyronitrile (AIBN) as the solid chemical propellant is deposited on a microheater using a screen-printing technique, which can heat the AIBN at 70 °C to produce nitrogen gas. The output pressure of nitrogen gas, generated from the solid chemical propellant, is adjustable to a desired pressure by controlling the input power of the heater. Using this chemical energy source, the generated pressure depends on the deposited amount of the solid chemical propellant and the temperature of the microheater. Experimental measurements show that this functional on-chip pressure generator can achieve around 3â 000 Pa pressure when 189 mJ of energy is applied to heat the 100 µg of AIBN. This pressure can drive 50 nl of water through a microfluidic channel of 70 mm and cross-sectional area of 100 µm à 50 µm. Due to its compact size, ease of fabrication and integration, high reliability (no moving parts), biologically inert gas output along with functionality of gas generation, this pressure generator will be an excellent pressure source for handling the fluids of disposable lab-on-a-chip, biochemical analysis systems or drug delivery systems. |
Формат |
application.pdf |
Издатель |
Royal Society of Chemistry |
Название |
A functional on-chip pressure generator using solid chemical propellant for disposable lab-on-a-chip |
Тип |
research-article |
DOI |
10.1039/b306116g |
Electronic ISSN |
1473-0189 |
Print ISSN |
1473-0197 |
Журнал |
Lab on a Chip |
Том |
3 |
Первая страница |
281 |
Последняя страница |
286 |
Аффилиация |
Hong Chien-Chong; MicroSystems and BioMEMS Lab, Department of Electrical and Computer Engineering and Computer Science, Department of Material Science and Engineering, University of Cincinnati |
Аффилиация |
Murugesan Suresh; MicroSystems and BioMEMS Lab, Department of Electrical and Computer Engineering and Computer Science, Department of Material Science and Engineering, University of Cincinnati |
Аффилиация |
Kim Sanghyo; MicroSystems and BioMEMS Lab, Department of Electrical and Computer Engineering and Computer Science, Department of Material Science and Engineering, University of Cincinnati |
Аффилиация |
Beaucage Gregory; MicroSystems and BioMEMS Lab, Department of Electrical and Computer Engineering and Computer Science, Department of Material Science and Engineering, University of Cincinnati |
Аффилиация |
Choi Jin-Woo; MicroSystems and BioMEMS Lab, Department of Electrical and Computer Engineering and Computer Science, Department of Material Science and Engineering, University of Cincinnati |
Аффилиация |
Ahn Chong H.; MicroSystems and BioMEMS Lab, Department of Electrical and Computer Engineering and Computer Science, Department of Material Science and Engineering, University of Cincinnati |
Выпуск |
4 |
Библиографическая ссылка |
M. Richter, R. Linnemann, P. Woias, Robust Design of Gas and Liquid Micropumps, Sens. Actuators, A, 1998, 68, 480 |
Библиографическая ссылка |
T. G. Kang, S. W. Kim, Y.-H. Cho, High-Impulse, Low-Power, Digital Microthrusters Using Low Boiling Temperature Liquid Propellant with High Viscosity Fluid Plug, Sens. Actuators, A, 2002, 97, 659 |
Библиографическая ссылка |
E. V. Mukerjee, A. P. Wallace, K. Y. Yan, D. W. Howard, R. L. Smith, S. D. Collins, Vaporizing Liquid Microthruster, Sens. Actuators, A, 2000, 83, 231 |
Библиографическая ссылка |
X. Y. Ye, F. Tang, H. Q. Ding, Z. Y. Zhou, Study of A Vaporizing Water Micro-Thruster, Sens. Actuators, A, 2001, 89, 159 |
Библиографическая ссылка |
D. L. Hitt, C. M Zakrzwski, M. A Thomas, MEMS-Based Satellite Micropropulsion via Catalyzed Hydrogen Peroxide Decompostion, Smart Mater. Struct., 2001, 10, 1163 |
Библиографическая ссылка |
C. Rossi, S. Orieux, B. Larangot, T. Do Conto, D. Esteve, Design, Fabrication and Modeling of Solid Propellant Microrocket-Application to Micropropulsion, Sens. Actuators, A, 2002, 99, 125 |
Библиографическая ссылка |
D. Teasdale, V. Milanvic, P. Chang, K. S. J. Pister, Microrockets for Smart Dust, Smart Mater. Struct., 2001, 10, 1145 |
Библиографическая ссылка |
C. Rossi, D. Esteve, C. Mingues, Pyrotechnic Actuator: A New Generation of Si Integrated Actuator, Sens. Actuators, A, 1999, 74, 211 |
Библиографическая ссылка |
C. Rossi, M. D. Rouhani, D. Esteve, Prediction of the Performance of A Si-Micromachined Microthruster by Computing the Subsonic Gas Flow inside the Thruster, Sens. Actuators, A, 2000, 87, 96 |
Библиографическая ссылка |
D. H. Lewis Jr., S. W. Janson, R. B. Cohen, E. K. Antonsson, Digital Micropropulsion, Sens. Actuators, A, 2000, 80, 143 |
Библиографическая ссылка |
S. Ringuette, C. Dubois, R. Stowe, On the Optimization of GAP-based Ducted Rocket Fuels from Gas Generator Exhaust Characterization, Propellants, Explos. Pyrotech., 2001, 26, 118 |
Библиографическая ссылка |
M. T. Tabka, J.-M. Chenal, J.-M. Widmaier, Effect of Stannous Octoate on the Thermal Decomposition of 2,2â ²-azobis(isobutyronitrile), Polymer Int., 2000, 49, 412 |
Библиографическая ссылка |
R. E. Morris, A. E. Mera, R. F. Brady Jr., Development of A Model System to Study Fuel Autoxidation in Supercritical Media: Decompostion Kinetics of 2,2â ²-Azobis(isobutyronitrile) in Supercritical Carbon Dioxide, Fuel, 2000, 79, 1101 |