Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Aas, Wenche
Автор Szabó, Zoltán
Автор Grenthe, Ingmar
Дата выпуска 1999
dc.description The formation of ternary UO2(ac)pFq <sup>2â â â pâ â â q </sup> (â pâ =â 1 or 2 and qâ =â 1â 3) complexes, and their equilibrium constants were investigated by potentiometric titrations and <sup>19</sup>F NMR spectroscopy. The equilibrium constants have been determined from the emf data in a NaClO4 medium at constant sodium concentration, [Na<sup>+</sup>]â =â 1.00 M at 25â °C, except for the UO2(ac)F3 <sup>2â </sup> complex where <sup>19</sup>F NMR at â 5â °C was used. The magnitude of the equilibrium constant for the stepwise addition of fluoride indicates that prior co-ordination of acetate has only a small effect on the subsequent bonding of fluoride. The acetate exchange in the ternary UO2(ac)F3 <sup>2â </sup> complex was studied using <sup>19</sup>F NMR. Through magnetisation transfer experiments, it was possible to confirm the provisional mechanism from a previous study and also the consistency of the rate constants for the five different exchange pathways required to describe the fluoride exchange. The exchange takes place via the intermediate UO2F3(H2O)2 <sup>â </sup>, indicating that the acetate exchange follows an interchange mechanism with solvent participation in the transition state. The rates and mechanisms of the ligand exchange reactions in UO2(ox)2(H2O)<sup>2â </sup> and UO2(ac)2(H2O) have been studied using <sup>13</sup>C NMR techniques at â 5â °C. The rate law is vâ =â k[complex][ligand], and the second order rate constant and the activation parameters for both systems have been determined. The reactions most likely take place through an Eigenâ Wilkins type of mechanism, where the first step is a pre-equilibrium of an outer-sphere complex followed by a rate determining exchange of water. The rate constants for the water exchange reactions are very similar to that in UO2(H2O)5 <sup>2+</sup>. The information from the binary oxalate system rules out the formation of UO2(ox)2(H2O)<sup>2â </sup> as an intermediate in the exchange reactions in the previously studied UO2(ox)2F<sup>3â </sup>, also in this case confirming a previously suggested exchange mechanism. The H<sup>+</sup>/D<sup>+</sup> isotope effects and a linear free energy relationship suggest that the main catalytic effect of H<sup>+</sup> on ligand exchange rates is due to the formation of a protonated precursor. Hence, the catalytic effect depends on the basicity of the ligand and the site for the proton attack.
Формат application.pdf
Издатель Royal Society of Chemistry
Название Equilibria and dynamics in binary and ternary uranyl oxalate and acetate/fluoride complexes †
Тип research-article
DOI 10.1039/a808416e
Electronic ISSN 1364-5447
Print ISSN 1472-7773
Журнал Journal of the Chemical Society, Dalton Transactions
Первая страница 1311
Последняя страница 1318
Выпуск 8
Библиографическая ссылка Z. Szabó, J. Glaser, I. Grenthe, Inorg. Chem., 1996, 35, 2036
Библиографическая ссылка Z. Szabó, W. Aas, I. Grenthe, Inorg. Chem., 1997, 36, 5369
Библиографическая ссылка Z. Szabó, I. Grenthe, Inorg. Chem., 1998, 37, 6214
Библиографическая ссылка M. Harada, Y. Fujii, S. Sakamaki, H. Tomiyasu, Bull. Chem. Soc. Jpn., 1992, 65, 3022
Библиографическая ссылка W. Aas, A. Moukhamet-Galeev, I. Grenthe, Radiochim. Acta, 1998, 82, 77
Библиографическая ссылка L. Ciavatta, D. Ferri, I. Grenthe, F. Salvatore, Inorg. Chem., 1981, 20, 463
Библиографическая ссылка H. M. Irving, M. G. Miles, L. D. Pettit, Anal. Chim. Acta, 1967, 38, 475
Библиографическая ссылка A. Liberti, M. Mascini, Anal. Chem., 1969, 41, 676
Библиографическая ссылка L. G. Sillén, B. Warnquist, Ark. Kemi, 1969, 31, 315
Библиографическая ссылка A. L. V. Geet, Anal. Chem., 1970, 42, 679
Библиографическая ссылка Z. Szabó, J. Glaser, Magn. Reson. Chem., 1995, 33, 20
Библиографическая ссылка S. Ahrland, L. Kullberg, Acta Chem. Scand., 1971, 25, 3677
Библиографическая ссылка S. Ahrland, L. Kullberg, Acta Chem. Scand., 1971, 25, 3457
Библиографическая ссылка W. H. Zachariasen, H. A. Plettinger, Acta Crystallogr., Sect. C, 1959, 12, 526
Библиографическая ссылка P. Hurwitz, K. Kustin, J. Phys. Chem., 1967, 71, 324
Библиографическая ссылка N. W. Alcock, J. Chem. Soc., Dalton Trans., 1973, 1614
Библиографическая ссылка N. W. Alcock, J. Chem. Soc., Dalton Trans., 1973, 1610
Библиографическая ссылка M. Eigen, R. G. Wilkins, Adv. Chem. Ser., 1965, 49, 55
Библиографическая ссылка Y. Ikeda, H. Tomiyasu, H. Fukutomi, Bull. Chem. Soc. Jpn., 1984, 57, 2925
Библиографическая ссылка L. Rodehüser, P. R. Rubini, K. Bokolo, J.-J. Delpuech, Inorg. Chem., 1982, 21, 1061
Библиографическая ссылка Y. Ikeda, H. Tomiyasu, H. Fukutomi, Bull. Chem. Soc. Jpn., 1983, 56, 1060
Библиографическая ссылка R. M. Fouss, J. Am. Chem. Soc., 1958, 80, 5050
Библиографическая ссылка I. Bányai, J. Glaser, K. Micskei, I. Tóth, L. Zékány, Inorg. Chem., 1995, 34, 3785

Скрыть метаданые