Автор |
Apperley, David C. |
Автор |
Hudson, Michael J. |
Автор |
Keene, Matthew T. J. |
Автор |
Knowles, James A. |
Дата выпуска |
1995 |
dc.description |
Kanemite, NaHSi2O5·3H2O, is able to exchange metal cations directly from aqueous solution. However, the degree of extraction is dependent upon whether kanemite or its hydrogen-exchanged form is the exchanger. Zinc cations, for example, are exchanged from basic solutions but the equilibrium extraction decreases with increasing acidity (at an equilibrium pH of 11.2, Kd=1070 cm<sup>3</sup> g<sup>â 1</sup>, whereas at an equilibrium pH of 4.88, Kd=70 cm<sup>3</sup> g<sup>â 1</sup>). Kanemite acts as an effective ion exchanger but the hydrogen-exchanged form is less effective, exchanging only by surface sorption at pH 2. In order to explain these and other properties, high-resolution solid-state magic-angle spinning nuclear magnetic resonance spectroscopy (MAS NMR) has been used to probe the structure of kanemite and its hydrogen-exchanged form. In kanemite there are only Q<sup>3</sup> silicon-containing groups with extensive hydrogen bonding, and the interlamellar water molecules interact strongly with the silicate layers. In the hydrogen form, there is a dominance of Q<sup>3</sup>, but there are also Q<sup>2</sup> and Q<sup>4</sup> silicons. There is no NMR evidence for extensive hydrogen bonding and the SiO-H group is essentially undissociated. There are Bipolar interactions between the protons and the Q<sup>3</sup> silicon atoms with weaker interactions with the Q<sup>2</sup> and Q<sup>4</sup>. When the H-form is heated to 400 °C, some of the Q<sup>3</sup> groups are involved in dehydroxylation reactions, as evidenced by the formation of Q<sup>4</sup> silicons, but there are still some Q<sup>3</sup> silicons remaining, and hence there are OH groups in the resulting material both from interlamellar water and Si-OH groups. |
Формат |
application.pdf |
Издатель |
Royal Society of Chemistry |
Название |
Kanemite (NaHSi2O5·3H2O) and its hydrogen-exchanged form |
Тип |
research-article |
DOI |
10.1039/JM9950500577 |
Electronic ISSN |
1364-5501 |
Print ISSN |
0959-9428 |
Журнал |
Journal of Materials Chemistry |
Том |
5 |
Первая страница |
577 |
Последняя страница |
582 |
Выпуск |
4 |
Библиографическая ссылка |
Johan, Bull. Soc. Fr. Miner. Crystallogr., 1972, 95, 371 |
Библиографическая ссылка |
Beneke, Am. Miner., 1977, 62, 763 |
Библиографическая ссылка |
Le Bihan, Bull Soc. Fr. Miner. Cristallogr., Sect. B, 1968, 24, 13 |
Библиографическая ссылка |
Le Bihan, Bull Soc. Fr. Miner. Cristallogr., 1971, 94, 15 |
Библиографическая ссылка |
Heidemann, Z. Anorg. Allg. Chem., 1985, 528, 22 |
Библиографическая ссылка |
Pinnavaia, J. Solid State Chem., 1986, 63, 118 |
Библиографическая ссылка |
Lagaly, Angew. Chem., Int. Ed. Engl., 1976, 15, 575 |
Библиографическая ссылка |
Yanagisawa, Bull. Chem. Soc. Jpn., 1990, 63, 988 |
Библиографическая ссылка |
Deng, Chem. Mater., 1989, 1, 375 |
Библиографическая ссылка |
G. H. Jeffrey , J.Bassett, J.Mendham and R. C.Denney, Vogel's Textbook of Quantitative Chemical Analysis, John Wiley, New York, 5th edn., 1989. |
Библиографическая ссылка |
Vega, J. Am. Chem. Soc., 1988, 110, 1049 |
Библиографическая ссылка |
Fyfe, J. Am. Chem. Soc., 1992, 114, 3252 |
Библиографическая ссылка |
Hudson, Can. J. Chem., 1989, 67, 1779 |
Библиографическая ссылка |
Inagaki, J. Chem. Soc., Chem. Commun., 1993, 680 |
Библиографическая ссылка |
Egan, J. Chem. Soc., 1945, 191 |
Библиографическая ссылка |
Irish, J. Chem. Phys., 1963, 39, 3436 |
Библиографическая ссылка |
Silver, Inorg. Chem., 1984, 23, 2844 |
Библиографическая ссылка |
Kraus, J. Am. Chem. Soc., 1955, 77, 3974 |
Библиографическая ссылка |
Almond, J. Chem. Soc., Chem. Commun., 1994, 851 |
Библиографическая ссылка |
Hudson, J. Mater. Chem., 1991, 1, 375 |