Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Sahoo, Yu Vin
Автор Nakai, Shun'ichi
Автор Ali, Arshad
Дата выпуска 2006
dc.description Tungsten isotope composition of a sample of deep-seated rock can record the influence of coreâ mantle interaction of the parent magma (D. Brandon and R. J. Walker, Earth Planet. Sci. Lett., 2005, 232, 211â 225).1 Samples of kimberlite, which is known as a carrier of diamond, from the deep mantle might exhibit effects of coreâ mantle interaction. Although tungsten isotope anomaly was reported for kimberlites from South Africa (K. D. Collerson, R. Schoenberg and B. S. Kamber, Geochim. Cosmochim. Acta, 2002, 66, A148),2 a subsequent investigation did not verify the anomaly (A. Scherstén, T. Elliot, C. Hawkesworth, and M. Norman, Nature, 2004, 427, 234â 237).3 The magnesium-rich and calcium-rich chemical composition of kimberlite might engender difficulty during chemical separation of tungsten for isotope analyses. This paper presents a simple, one-step anion exchange technique for precise and accurate determination of tungsten isotopes in kimberlites using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Large quantities of Ca and Mg in kimberlite samples were precipitated and removed with aqueous H2SO4. Highly pure fractions of tungsten for isotopic measurements were obtained following an anion exchange chromatographic procedure involving mixed acids. That procedure enabled efficient removal of high field strength elements (HFSE), such as Hf, Zr and Ti, which are small ions that carry strong charges and develop intense electrostatic fields (F. Albarède, An Introduction to Geochemistry, Cambridge University Press, Cambridge, UK, 2003).4 The tungsten yields were 85%â 95%. Advantages of this system include less time and less use of reagents. Precise and accurate isotopic measurements are possible using fractions of tungsten that are obtained using this method. The accuracy and precision of these measurements were confirmed using various silicate standard rock samples, JB-2, JB-3 and AGV-1.
Формат application.pdf
Издатель Royal Society of Chemistry
Название Modified ion exchange separation for tungsten isotopic measurements from kimberlite samples using multi-collector inductively coupled plasma mass spectrometry
Тип research-article
DOI 10.1039/b511557d
Electronic ISSN 1364-5528
Print ISSN 0003-2654
Журнал Analyst
Том 131
Первая страница 434
Последняя страница 439
Аффилиация Sahoo Yu Vin; Earthquake Research Institute, The University of Tokyo
Аффилиация Nakai Shun'ichi; Earthquake Research Institute, The University of Tokyo
Аффилиация Ali Arshad; Earthquake Research Institute, The University of Tokyo
Выпуск 3
Библиографическая ссылка Brandon, Earth Planet. Sci. Lett., 2005, 232, 211
Библиографическая ссылка Collerson, Geochim. Cosmochim. Acta, 2002, 66, A148
Библиографическая ссылка Scherstén, Nature, 2004, 427, 234
Библиографическая ссылка F. Albarède , An Introduction to Geochemistry, Cambridge University Press, Cambridge, UK, 2003
Библиографическая ссылка Zhao, Earth Planet. Sci. Lett., 2001, 192, 251
Библиографическая ссылка Harper, Lunar Planet. Sci., 1991, 22, 515
Библиографическая ссылка Harper Jr, Geochim. Cosmochim. Acta, 1996, 60, 1131
Библиографическая ссылка A. N. Halliday , D.-C.Lee and S. B.Jacobsen, Tungsten isotopes, the timing of metal-silicate fractionation, and the origin of the Earth and Moon, in Origin of the Earth and Moon, ed. R. M. Canup and K. Righter, The University of Arizona Press, Tucson, 2000, pp. 45–62
Библиографическая ссылка Lee, Nature, 1995, 378, 771
Библиографическая ссылка Yin, Nature, 2002, 418, 949
Библиографическая ссылка Kleine, Nature, 2002, 418, 952
Библиографическая ссылка Schoenberg, Geochim. Cosmochim. Acta, 2002, 66, 3151
Библиографическая ссылка Tachibana, Geochim. Cosmochim. Acta, 2003, 67, A463
Библиографическая ссылка Völkening, Int. J. Mass Spectrom. Ion Processes, 1991, 107, 361
Библиографическая ссылка Horan, Geochim. Cosmochim. Acta, 1998, 62, 545
Библиографическая ссылка Quitté, Geostand. Newsl., 2002, 26, 149
Библиографическая ссылка Lee, Int. J. Mass Spectrom. Ion Processes, 1995, 146, 35
Библиографическая ссылка Goguel, Fresenius’ J. Anal. Chem., 1992, 334, 326
Библиографическая ссылка Trubert, Anal. Chim. Acta, 1996, 332, 257
Библиографическая ссылка Trubert, Anal. Chim. Acta, 1998, 374, 149
Библиографическая ссылка Coedo, Anal. Chim. Acta, 1995, 315, 331
Библиографическая ссылка David, Chem. Geol., 2001, 178, 23
Библиографическая ссылка Barovich, Chem. Geol., 1995, 121, 303
Библиографическая ссылка Saito, Pure Appl. Chem., 1984, 56, 523
Библиографическая ссылка Nakai, Analyst, 2001, 126, 1707
Библиографическая ссылка F. A. Cotton , G.Wilkinson, C. A.Murillo and M.Bochmann, Advanced Inorganic Chemistry, John Wiley and Sons, Inc., New York, 6th edn, 1999
Библиографическая ссылка Le Rolex, J. Petrol., 2003, 44, 2261

Скрыть метаданые