Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Dai, Xuan
Автор Compton, Richard G.
Дата выпуска 2006
dc.description The electrochemical detection of As(iii) was investigated on a platinum nanoparticle modified glassy carbon electrode in 1 M aqueous HClO4. Platinum nanoparticle modified glassy carbon electrodes were prepared by potential cycling in 0.1 M aqueous KCl containing 1 mM K2PtCl6. In each potential cycle, the potential was held at + 0.5 V for 0.01 s and at â 0.7 V for 10 s. 25 cycles were optimally used to prepare the electrodes. The resulting electrode surfaces were characterized with AFM. The response to arsenic(iii) on the modified electrode was examined using cyclic voltammetry and linear sweep voltammetry. By using the As(iii) oxidation peak for the analytical determination, there is no interference from Cu(ii) if present in contrast to the other metal surfaces (especially gold) typically used for the detection of arsenic; Cu(ii) precludes the use of the As(0) to As(iii) peak for quantitative anodic stripping voltammetry measurements due to the formation of Cu3As2 and an overlapping interference peak from the stripping of Cu(0). After optimization, a LOD of 2.1 ± 0.05 ppb was obtained using the direct oxidation of As(iii) to As(v), while the World Health Organization's guideline value of arsenic for drinking water is 10 ppb, suggesting the method may have practical utility.
Формат application.pdf
Издатель Royal Society of Chemistry
Название Detection of As(iii) via oxidation to As(v) using platinum nanoparticle modified glassy carbon electrodes: arsenic detection without interference from copper
Тип research-article
DOI 10.1039/b513686e
Electronic ISSN 1364-5528
Print ISSN 0003-2654
Журнал Analyst
Том 131
Первая страница 516
Последняя страница 521
Аффилиация Dai Xuan; Physical and Theoretical Chemistry Laboratory, University of Oxford
Аффилиация Compton Richard G.; Physical and Theoretical Chemistry Laboratory, University of Oxford
Выпуск 4
Библиографическая ссылка Mandal, Talanta, 2002, 58, 201
Библиографическая ссылка Le, Anal. Chem., 2004, 76, 27A
Библиографическая ссылка Hung, Talanta, 2004, 64, 269
Библиографическая ссылка Cavicchioli, Electroanalysis, 2004, 16, 697
Библиографическая ссылка Brainina, Fresenius’ J. Anal. Chem., 2000, 368, 307
Библиографическая ссылка Forsberg, Anal. Chem., 1975, 47, 1586
Библиографическая ссылка Simm, Anal. Chem., 2004, 76, 5051
Библиографическая ссылка Dai, Anal. Chem., 2004, 76, 5924
Библиографическая ссылка Anawar, Environ. Int., 2002, 27, 597
Библиографическая ссылка Kotoucek, Mikrochim. Acta, 1993, 111, 55
Библиографическая ссылка Dai, Electroanalysis, 2005, 17, 1325
Библиографическая ссылка Lown, Anal. Chim. Acta, 1980, 116, 41
Библиографическая ссылка Williams, Anal. Chem., 1992, 64, 1785
Библиографическая ссылка Simm, Anal. Sci., 2005, 21, 667
Библиографическая ссылка Hernandez-Santos, Electroanalysis, 2002, 14, 1225
Библиографическая ссылка Cabelka, J. Electrochem. Soc., 1984, 131, 1595
Библиографическая ссылка Cui, J. Electroanal. Chem., 2005, 577, 295
Библиографическая ссылка Austin, J. Electroanal. Chem., 1984, 168, 227

Скрыть метаданые