Дата выпуска |
2009 |
ISBN |
978-0-85404-160-2 |
Формат |
application.pdf |
Издатель |
Royal Society of Chemistry |
Название |
Chapter 11. Rule Discovery |
Тип |
other |
DOI |
10.1039/9781847559807-00110 |
Print ISSN |
2041-3181 |
Журнал |
Knowledge-based Expert Systems in Chemistry: Not Counting on Computers |
Первая страница |
110 |
Последняя страница |
118 |
Библиографическая ссылка |
C. Hansch, T. Fujita, A Method for the Correlation of Biological Activity and Chemical Structure, J. Am. Chem. Soc., 1964, 86, 1616, 1626 |
Библиографическая ссылка |
T. Fujita, J. Isawa, C. Hansch, A New Substituent Constant, Ï , Derived from Partition Coefficient, J. Am. Chem. Soc., 1964, 86, 5175, 5180 |
Библиографическая ссылка |
L. H. Hall, B. Mohney, L. B. Kier, The Electrotopological State: Structure Information at the Atomic Level for Molecular Graphs, J. Am. Chem. Soc., 1991, 31, 76, 82 |
Библиографическая ссылка |
M. J. Kamlet, J.-L. M. Abboud, M. H. Abraham, R. W. Taft, Linear Solvation Energy Relationships. 23. A Comprehensive Collection of the Solvatochromic Parameters, Ï *, α, and β, and Some Methods for Simplifying the Generalised Solvatochromic Equation, J. Org. Chem., 1983, 48, 2877, 2887 |
Библиографическая ссылка |
K. Enslein, P. N. Craig, Carcinogenesis: a Predictive Structure-Activity Model, J. Toxicol. Environ. Health, 1982, 10, 521, 530 |
Библиографическая ссылка |
K. Enslein, V. K. Gombar, B. W. Blake, Use of SAR in Computer-Assisted Prediction of Carcinogenicity and Mutagenicity of Chemicals by the TOPKAT Program, Mutation Res., 1994, 305, 47, 62 |
Библиографическая ссылка |
G. Klopman, Artificial Intelligence Approach to Structure-Activity Studies: Computer Automated Structure Evaluation of Biological Activity of Organic Molecules, J. Am. Chem. Soc., 1984, 106, 7315, 7321 |
Библиографическая ссылка |
G. Klopman, S. K. Chakravarti, H. Zhu, J. M. Ivanov, R. D. Saiakhov, ESP: a Method to Predict Toxicity and Pharmacological Properties of Chemicals Using Multiple MCASE Databases, J. Chem. Inf. Comput. Sci., 2004, 44, 704, 715 |
Библиографическая ссылка |
P. N. Judson, Rule Induction for Systems Predicting Biological Activity, J. Chem. Inf. Comput. Sci., 1994, 34, 148, 53 |
Библиографическая ссылка |
R. E. Carhart, D. H. Smith, R. Venkataraghavan, Atom Pairs as Molecular Features in Structure-Activity Studies: Definition and Applications, J. Chem. Inf. Comput. Sci., 1985, 25, 64, 73 |
Библиографическая ссылка |
R. Kühne, R. -U. Ebert, G. Schüürmann, Estimation of Compartmental Half-Lives of Organic Compoundsâ Structural Similarity vs. EPI-Suite, QSAR Comb. Sci., 2007, 26, 542, 549 |
Библиографическая ссылка |
J. R. Quinlan, Induction of Decision Trees, Machine Learning, 1986, 1, 81, 106 |
Библиографическая ссылка |
R. D. King, A. Srinivasan, Prediction of Rodent Carcinogenicity Bioassays from Molecular Structure Using Inductive Logic Programming, Environ. Health, Perspect., 1996, 104, 1031, 1040 |
Библиографическая ссылка |
M. Vracko, V. Bandelj, P. Barbieri, E. Benfenati, Q. Chaudhry, M. Cronin, J. Devillers, A. Gallegos, G. Gini, P. Gramatica, C. Helma, D. Neagu, T. Netzeva, M. Pavan, G. Patlevicz, M. Randic, I. Tsakovska, A. Worth, Validation of Counter Propagation Neural Network Models for Predictive Toxicology According to the OECD Principles. A Case Study, SAR QSAR Environ. Res., 2006, 17, 265, 284 |
Библиографическая ссылка |
F. V. Buontempo, X. Z. Wang, M. Mwense, N. Horan, A. Young, D. Osborn, Genetic Programming for the Induction of Decision Trees to Model Ecotoxicity Data, J. Chem. Inf. Model., 2005, 45, 904, 912 |
Библиографическая ссылка |
C. Helma, T. Cramer, S. Cramer, L. De Raedt, Data Mining and Machine Learning Techniques for the Identification of Mutagenicity Inducing Substructures and Structure Activity Relationships of Noncongeneric Compounds, J. Chem. Inf. Comput. Sci., 2004, 44, 1402, 1411 |