Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Losi, Aba
Дата выпуска 2006
ISBN 978-0-85404-331-6
dc.description We review the bacterial proteins related to the flavin-binding plant UVA/Blue-light sensors phototropins (phot), photoactivated adenylyl cyclase (PAC) and cryptochromes (Cry). Phot and PAC sense light via specialized domains, called respectively LOV (Light, Oxygen, Voltage) and BLUF (Blue Light sensing Using FAD). Genome digging reveals that about 16% of bacteria possess genes encoding for LOV, BLUF or/and Cry proteins. Up to now, their physiological role as photoreceptors has been established only for the BLUF proteins AppA in Rhodobacter sphaeroides and Slr1694 in Synechocystis sp. PCC 6803, but light-driven reactions have been demonstrated also for LOV proteins and detailed structural information is available for a cyanobacterial Cry. Bacterial LOV and BLUF proteins are highly modular and contain diverse catalytic functions (e.g. kinases, phosphodiesterase) associated to the photosensing domain, highlighting their involvement in various signal transduction pathways. This modularity can constitute a powerful tool (and a potential model for protein engineering) in understanding the modalities of interdomain communication in sensor proteins, given that signal transduction can be easily triggered by a light pulse. Thanks to the large spreading of flavin-based bacterial blue-light sensing proteins, phylogenetic analysis may provide important clues to understand how similar proteins have evolved in eukaryotic organisms. Furthermore, investigation of their physiological role is likely to provide us a more comprehensive view of how bacteria â seeâ their world.
Формат application.pdf
Издатель Royal Society of Chemistry
Название Chapter 10. Flavin-Based Photoreceptors in Bacteria
Тип other
DOI 10.1039/9781847555397-00217
Print ISSN 2041-9716
Журнал Flavins Photochemistry and Photobiology: Volume 6
Том 6
Первая страница 217
Последняя страница 269
Аффилиация Losi Aba; Department of Physics-University of Parma
Библиографическая ссылка J. E. Hughes, T. Lamparter, F. Mittmann, E. Hartmann, W. Gärtner, A. Wilde, T. Börner, A prokaryotic phytochrome, Nature, 1997, 386, 663
Библиографическая ссылка M. Gomelsky, G. Klug, BLUF: a novel FAD-binding domain involved in sensory transduction in microorganisms, Trends Biochem. Sci., 2002, 27, 497, 500
Библиографическая ссылка S. Crosson, S. Rajagopal, K. Moffat, The LOV domain family: photoresponsive signaling modules coupled to diverse output domains, Biochemistry, 2003, 42, 2, 10
Библиографическая ссылка K. H. Jung, V. D. Trivedi, J. L. Spudich, Demonstration of a sensory rhodopsin in eubacteria, Mol. Microbiol., 2003, 47, 1513, 1522
Библиографическая ссылка W. Gärtner, A. Losi, Crossing the borders: archaeal rhodopsins go bacterial, Trends Microbiol., 2003, 11, 405, 407
Библиографическая ссылка A. Losi, The bacterial counterparts of plants phototropins, Photochem. Photobiol. Sci., 2004, 3, 566, 574
Библиографическая ссылка B. L. Montgomery, J. C. Lagarias, Phytochrome ancestry: sensors of bilins and light, Trends Plant Sci., 2002, 7, 357, 366
Библиографическая ссылка B. Quest, W. Gartner, Chromophore selectivity in bacterial phytochromes: dissecting the process of chromophore attachment, Eur. J. Biochem., 2004, 271, 1117, 1126
Библиографическая ссылка B. Karniol, R. D. Vierstra, The pair of bacteriophytochromes from Agrobacterium tumefaciens are histidine kinases with opposing photobiological properties, Proc. Nat. Acad. Sci. USA, 2003, 100, 2807, 2812
Библиографическая ссылка A. Losi, E. Polverini, B. Quest, W. Gärtner, First evidence for phototropin-related blue-light receptors in prokaryotes, Biophys. J., 2002, 82, 2627, 2634
Библиографическая ссылка R. Brudler, K. Hitomi, H. Daiyasu, H. Toh, K. I. Kucho, M. Ishiura, M. Kanehisa, V. A. Roberts, T. Todo, J. A. Tainer, E. D. Getzoff, Identification of a New Cryptochrome Class: structure, Function, and Evolution, Mol. Cell, 2003, 11, 59, 67
Библиографическая ссылка W. R. Briggs, E. Huala, Blue-light photoreceptors in higher plants, Ann. Rev. Cell. Develop. Biol., 1999, 15, 33, 62
Библиографическая ссылка R. Banerjee, A. Batschauer, Plant blue-light receptors, Planta, 2005, 220, 498, 502
Библиографическая ссылка M. Iseki, S. Matsunaga, A. Murakami, K. Ohno, K. Shiga, K. Yoshida, M. Sugai, T. Takahashi, T. Hori, A. Watanabe, Euglena gracilis, Nature, 2002, 415, 1047, 1051
Библиографическая ссылка K. J. Hellingwerf, Key issues in the photochemistry and signalling-state formation of photosensor proteins, J. Photochem. Photobiol. B: Biol., 2000, 54, 94, 102
Библиографическая ссылка W. R. Briggs, J. M. Christie, Phototropins 1 and 2: versatile plant blue-light receptors, Trends Plant Sci., 2002, 7, 204, 210
Библиографическая ссылка M. Ohgishi, K. Saji, K. Okada, T. Sakai, Functional analysis of each blue light receptor, cry1, cry2, phot1, and phot2, by using combinatorial multiple mutants in Arabidopsis, Proc. Nat. Acad. Sci. USA, 2004, 101, 2223, 2228
Библиографическая ссылка K. Huang, C. F. Beck, Chlamydomonas reinhardtii, Proc. Nat. Acad. Sci. USA, 2003, 100, 6269, 6274
Библиографическая ссылка E. Huala, P. W. Oeller, E. Liscum, I. S. Han, E. Larsen, W. R. Briggs, Arabidopsis, Science, 1997, 278, 2120, 2123
Библиографическая ссылка I. B. Zhulin, B. L. Taylor, R. Dixon, PAS domain S-boxes in Archaea, Bacteria and sensors for oxygen and redox, Trends Biochem. Sci., 1997, 22, 331, 333
Библиографическая ссылка M. H. Hefti, K. J. Francoijs, S. C. de Vries, R. Dixon, J. Vervoort, The PAS fold: a redefinition of the PAS domain based upon structural prediction, FEBS J., 2004, 271, 1198, 1208
Библиографическая ссылка M. Kasahara, T. E. Swartz, M. A. Olney, A. Onodera, N. Mochizuki, H. Fukuzawa, E. Asamizu, S. Tabata, H. Kanegae, M. Takano, J. M. Christie, A. Nagatani, W. R. Briggs, Chlamydomonas reinhardtii, Plant Physiol., 2002, 129, 762, 773
Библиографическая ссылка M. Salomon, J. M. Christie, E. Knieb, U. Lempert, W. R. Briggs, Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor phototropin, Biochemistry, 2000, 39, 9401, 9410
Библиографическая ссылка M. Salomon, W. Eisenreich, H. Dürr, E. Scleicher, E. Knieb, V. Massey, W. Rüdiger, F. Müller, A. Bacher, G. Richter, Avena sativa, Proc. Nat. Acad. Sci. USA, 2001, 98, 12357, 12361
Библиографическая ссылка S. Crosson, K. Moffat, Photoexcited Structure of a Plant Photoreceptor Domain Reveals a Light-Driven Molecular Switch, Plant Cell, 2002, 14, 1067, 1075
Библиографическая ссылка C. W. M. Kay, E. Schleicher, A. Kuppig, H. Hofner, W. Rüdiger, M. Schleicher, M. Fischer, A. Bacher, S. Weber, G. Richter, Blue light perception in plants. Detection and characterization of a light-induced neutral flavin radical in a C450A mutant of phototropin, J. Biol. Chem., 2003, 278, 10973, 10982
Библиографическая ссылка J. T. M. Kennis, S. Crosson, M. Gauden, I. H. M. van Stokkum, K. Moffat, R. van Grondelle, Primary Reactions of the LOV2 Domain of Phototropin, a Plant Blue-Light Photoreceptor, Biochemistry, 2003, 42, 3385, 3392
Библиографическая ссылка T. E. Swartz, S. B. Corchnoy, J. M. Christie, J. W. Lewis, I. Szundi, W. R. Briggs, R. A. Bogomolni, The photocycle of a flavin-binding domain of the blue light photoreceptor phototropin, J. Biol. Chem., 2001, 276, 36493, 36500
Библиографическая ссылка T. Kottke, J. Heberle, D. Hehn, P. Hegemann, Chlamydomonas reinhardtii, Biophys. J., 2003, 84, 1192, 1201
Библиографическая ссылка S. Crosson, K. Moffat, Structure of a flavin-binding plant photoreceptor domain: insights into light-mediated signal transduction, Proc. Nat. Acad. Sci. USA, 2001, 98, 2995, 3000
Библиографическая ссылка R. Fedorov, I. Schlichting, E. Hartmann, T. Domratcheva, M. Fuhrmann, P. Hegemann, Chlamydomonas reinhardtii, Biophys. J., 2003, 84, 2492, 2501
Библиографическая ссылка J. M. Christie, T. E. Swartz, R. A. Bogomolni, W. R. Briggs, Phototropin LOV domains exhibit distinct roles in regulating photoreceptor function, Plant J., 2002, 32, 205, 219
Библиографическая ссылка T. Mizoguchi, G. Coupland, ZEITLUPE and FKF1: novel connections between flowering time and circadian clock control, Trends Plant Sci., 2000, 5, 409, 411
Библиографическая ссылка T. Imaizumi, H. G. Tran, T. E. Swartz, W. R. Briggs, S. A. Kay, FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis, Nature, 2003, 426, 302, 306
Библиографическая ссылка L. Han, M. Mason, E. P. Risseeuw, W. L. Crosby, D. E. Somers, Formation of an SCF(ZTL) complex is required for proper regulation of circadian timing, Plant J., 2004, 40, 291, 301
Библиографическая ссылка C. M. Pickart, M. J. Eddins, Ubiquitin: structures, functions, mechanisms, Biochim. Biophys. Acta, 2004, 1695, 55, 72
Библиографическая ссылка J. Adams, R. Kelso, L. Cooley, The kelch repeat superfamily of proteins: propellers of cell function, Trends Cell Biol., 2000, 10, 17, 24
Библиографическая ссылка R. Ambra, B. Grimaldi, S. Zamboni, P. Filetici, G. Macino, P. Ballario, Tuber borchii, Neurospora crassa, Fungal Genetics Biol., 2004, 41, 688, 697
Библиографическая ссылка A. Sancar, Photolyase and cryptochrome blue-light photoreceptors, Adv. Prot. Chem., 2004, 69, 73, 100
Библиографическая ссылка S. Weber, Light-driven enzymatic catalysis of DNA repair: a review of recent biophysical studies on photolyase, Biochim. Biophys. Acta-Bioenerg., 2005, 1707, 1, 23
Библиографическая ссылка A. R. Cashmore, J. A. Jarillo, Y. J. Wu, D. M. Liu, Cryptochromes: blue light receptors for plants and animals, Science, 1999, 284, 760, 765
Библиографическая ссылка C. A. Brautigam, B. S. Smith, Z. Ma, M. Palnitkar, D. R. Tomchick, M. Machius, J. Deisenhofer, Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana, Proc. Nat. Acad. Sci. USA, 2004, 101, 12142, 12147
Библиографическая ссылка C. Lin, D. Shalitin, Cryptochrome structure and signal transduction, Ann. Rev. Plant Biol., 2003, 54, 469, 496
Библиографическая ссылка C. L. Partch, M. W. Clarkson, S. Ozgur, A. L. Lee, A. Sancar, Role of structural plasticity in signal transduction by the cryptochrome blue-light photoreceptor, Biochemistry, 2005, 44, 3795, 3805
Библиографическая ссылка K. Malhotra, S. T. Kim, A. Batschauer, L. Dawut, A. Sancar, Arabidopsis thaliana, Sinapis alba, Biochemistry, 1995, 34, 6892, 6899
Библиографическая ссылка T. Imaizumi, T. Kanegae, M. Wada, Adiantum capillus-veneris, Plant Cell, 2000, 12, 81, 96
Библиографическая ссылка T. Kleine, P. Lockhart, A. Batschauer, An Arabidopsis protein closely related to Synechocystis cryptochrome is targeted to organelles, Plant J., 2003, 35, 93, 103
Библиографическая ссылка H. Daiyasu, T. Ishikawa, K. I. Kuma, S. Iwai, T. Todo, H. Toh, Identification of cryptochrome DASH from vertebrates, Genes To Cells, 2004, 9, 479, 495
Библиографическая ссылка B. Giovani, M. Byrdin, M. Ahmad, K. Brettel, Light-induced electron transfer in a cryptochrome blue-light photoreceptor, Nature Struct. Biol., 2003, 10, 489, 490
Библиографическая ссылка I. H. Kavakli, A. Sancar, in vivo, Biochemistry, 2004, 43, 15103, 15110
Библиографическая ссылка M. Ntefidou, M. Iseki, M. Watanabe, M. Lebert, D. P. Hader, Euglena gracilis, Plant Physiol., 2003, 133, 1517, 1521
Библиографическая ссылка M. Gomelsky, S. Kaplan, appA, a novel gene encoding a trans-acting factor involved in the regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1, J. Bacteriol., 1995, 177, 4609, 4618
Библиографическая ссылка M. Gomelsky, S. Kaplan, AppA, a redox regulator of photosystem formation in Rhodobacter sphaeroides 2.4.1, is a flavoprotein. Identification of a novel fad binding domain, J. Biol. Chem., 1998, 273, 35319, 35325
Библиографическая ссылка S. Masuda, C. E. Bauer, Rhodobacter sphaeroides, Cell, 2002, 110, 613, 623
Библиографическая ссылка S. Braatsch, M. Gomelsky, S. Kuphal, G. Klug, A single flavoprotein, AppA, integrates both redox and light signals in Rhodobacter sphaeroides, Mol. Microbiol., 2002, 45, 827, 836
Библиографическая ссылка Y. Koumura, T. Suzuki, S. Yoshikawa, M. Watanabe, M. Iseki, Euglena, Euglena gracilis, Photochem. Photobiol. Sci., 2004, 3, 580, 586
Библиографическая ссылка A. Kita, K. Okajima, Y. Morimoto, M. Ikeuchi, K. Miki, Structure of a Cyanobacterial BLUF Protein, Tll0078, Containing a Novel Fad-binding Blue Light Sensor Domain, J. Mol. Biol., 2005, 349, 1, 9
Библиографическая ссылка V. Massey, The chemical and biological versatility of riboflavin, Biochem. Soc. T., 2000, 28, 283, 296
Библиографическая ссылка M. A. Miranda, Photosensitization by drugs, Pure Appl. Chem., 2001, 73, 481, 486
Библиографическая ссылка S. Y. Egorov, A. A. Krasnovsky Jr., M. Y. Bashtanov, E. A. Mironov, T. A. Ludnikova, M. S. Kritsky, Photosensitization of singlet oxygen formation by pterins and flavins. Time-resolved studies of oxygen phosphorescence under laser excitation, Biochemistry Moscow, 1999, 64, 1117, 1121
Библиографическая ссылка C. Y. Lu, Y. Y. Liu, Electron transfer oxidation of tryptophan and tyrosine by triplet states and oxidized radicals of flavin sensitizers: a laser flash photolysis study, Biochim. Biophys. Acta, 2002, 1571, 71, 76
Библиографическая ссылка C. Y. Lu, S. D. Yao, N. Y. Lin, Photooxidation of 2â ²-deoxyguanosine 5â ²-monophosphate (dGMP) by flavin adenine dinucleotide (FAD) via electron transfer: a laser photolysis study, Chem. Phys. Lett., 2000, 330, 389, 396
Библиографическая ссылка M. Gauden, S. Yeremenko, W. Laan, I. H. M. van Stokkum, J. A. Ihalainen, R. van Grondelle, K. J. Hellingwerf, J. T. M. Kennis, Photocycle of the Flavin-Binding Photoreceptor AppA, a Bacterial Transcriptional Antirepressor of Photosynthesis Genes, Biochemistry, 2005, 44, 3653, 3662
Библиографическая ссылка M. Sakai, H. Takahashi, One-electron photoreduction of flavin mononucleotide: time-resolved resonance Raman and absorption study, J. Mol. Struct., 1996, 379, 9, 18
Библиографическая ссылка T. Bernt Melo, M. Adriana Ionescu, G. W. Haggquist, K. Razi Naqvi, Hydrogen abstraction by triplet flavins. I: time-resolved multi-channel absorption spectra of flash-irradiated riboflavin solutions in water, Spectrochim. Acta A, 1999, 55, 2299, 2307
Библиографическая ссылка C. Lin, D. E. Robertson, M. Ahmad, A. A. Raibekas, M. S. Jorns, P. L. Dutton, A. R. Cashmore, Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1, Science, 1995, 269, 968, 970
Библиографическая ссылка A. Bacher, S. Eberhardt, M. Fischer, K. Kis, G. Richter, Biosynthesis of vitamin b2 (riboflavin), Annu. Rev. Nutr., 2000, 20, 153, 167
Библиографическая ссылка M. Fischer, A. K. Schott, W. Romisch, A. Ramsperger, M. Augustin, A. Fidler, A. Bacher, G. Richter, R. Huber, A. Eisenreich, Evolution of vitamin B2 biosynthesis. A novel class of riboflavin synthase in Archaea, J. Mol. Biol., 2004, 343, 267, 278
Библиографическая ссылка H. Katagiri, H. Yamada, K. Imai, Biosynthesis of flavin coenzymes by microorganisms. II. Enzymic synthesis of flavin-adenine dinucleotide by Escherichia coli, J. Vitaminol., 1959, 5, 307, 311
Библиографическая ссылка H. Katagiri, H. Yamada, K. Imai, Biosynthesis of flavin coenzymes by microorganisms. I. Bacterial flavokinase, J. Vitaminol., 1959, 5, 129, 133
Библиографическая ссылка W. Laan, T. Bednarz, J. Heberle, K. J. Hellingwerf, Chromophore composition of a heterologously expressed BLUF-domain, Photochem. Photobiol. Sci., 2004, 3, 1011, 1016
Библиографическая ссылка S. McGinnis, T. L. Madden, BLAST: at the core of a powerful and diverse set of sequence analysis tools, Nuc. Ac. Res., 2004, 32, W20, W25
Библиографическая ссылка C. Kanz, P. Aldebert, N. Althorpe, W. Baker, A. Baldwin, K. Bates, P. Browne, A. van den Broek, M. Castro, G. Cochrane, K. Duggan, R. Eberhardt, N. Faruque, J. Gamble, F. G. Diez, N. Harte, T. Kulikova, Q. Lin, V. Lombard, R. Lopez, R. Mancuso, M. McHale, F. Nardone, V. Silventoinen, S. Sobhany, P. Stoehr, M. A. Tuli, K. Tzouvara, R. Vaughan, D. Wu, W. Zhu, R. Apweiler, The EMBL Nucleotide Sequence Database, Nuc. Ac. Res., 2005, 33, D29, D33
Библиографическая ссылка D. L. Wheeler, T. Barrett, D. A. Benson, S. H. Bryant, K. Canese, D. M. Church, M. DiCuccio, R. Edgar, S. Federhen, W. Helmberg, D. L. Kenton, O. Khovayko, D. J. Lipman, T. L. Madden, D. R. Maglott, J. Ostell, J. U. Pontius, K. D. Pruitt, G. D. Schuler, L. M. Schriml, E. Sequeira, S. T. Sherry, K. Sirotkin, G. Starchenko, T. O. Suzek, R. Tatusov, T. A. Tatusova, L. Wagner, E. Yaschenko, Database resources of the National Center for Biotechnology Information, Nuc. Ac. Res., 2005, 33, D39, D45
Библиографическая ссылка S. Masuda, K. Hasegawa, A. Ishii, T. A. Ono, Synechocystis sp, Biochemistry, 2004, 43, 5304, 5313
Библиографическая ссылка Y. Fukushima, K. Okajima, Y. Shibata, M. Ikeuchi, S. Itoh, Primary Intermediate in the Photocycle of a Blue-Light Sensory BLUF FAD-Protein, Tll0078, of Thermosynechococcus elongatus BP-1, Biochemistry, 2005, 44, 5149, 5158
Библиографическая ссылка E. N. Worthington, I. H. Kavakli, G. Berrocal-Tito, B. E. Bondo, A. Sancar, Purification and characterization of three members of the photolyase/cryptochrome family glue-light photoreceptors from Vibrio cholerae, J. Biol. Chem., 2003, 278, 39143, 39154
Библиографическая ссылка A. Losi, B. Quest, W. Gärtner, Listening to the blue: the time-resolved thermodynamics of the bacterial blue-light receptor YtvA and its isolated LOV domain, Photochem. Photobiol. Sci., 2003, 2, 759, 766
Библиографическая ссылка P. Cheng, Q. He, Y. Yang, L. Wang, Y. Liu, Functional conservation of light, oxygen, or voltage domains in light sensing, Proc. Nat. Acad. Sci. USA, 2003, 100, 5938, 5943
Библиографическая ссылка Q. He, P. Cheng, Y. Yang, L. Wang, K. H. Gardner, Y. Liu, White collar-1, a DNA binding transcription factor and a light sensor, Science, 2002, 297, 840, 843
Библиографическая ссылка C. Schwerdtfeger, H. Linden, VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation, EMBO J., 2003, 22, 4846, 4855
Библиографическая ссылка A. Losi, T. Kottke, P. Hegemann, Chlamydomonas reinhardtii, Biophys. J., 2004, 86, 1051, 1060
Библиографическая ссылка T. Bednarz, A. Losi, W. Gärtner, P. Hegemann, J. Heberle, Functional variations among LOV domains as revealed by FT-IR difference spectroscopy, Photochem. Photobiol. Sci., 2004, 3, 575, 579
Библиографическая ссылка A. Losi, E. Ternelli, W. Gärtner, Bacillus subtilis, Photochem. Photobiol., 2004, 80, 150, 153
Библиографическая ссылка L. Aravind, E. V. Koonin, The STAS domain a link between anion transporters and antisigma-factor antagonists, Curr. Biol., 2000, 10, R53, R55
Библиографическая ссылка S. Akbar, T. A. Gaidenko, K. Min, M. O'Reilly, K. M. Devine, C. W. Price, Bacillus subtilis, J. Bacteriol., 2001, 183, 1329, 1338
Библиографическая ссылка T. W. Grebe, J. B. Stock, The histidine protein kinase superfamily, Adv. Microb. Physiol., 1999, 41, 139, 227
Библиографическая ссылка A. H. West, A. M. Stock, Histidine kinases and response regulator proteins in two-component signaling systems, Trends Biochem. Sci., 2001, 26, 369, 376
Библиографическая ссылка Y. Shiro, H. Nakamura, Heme-based oxygen sensor protein FixL: its structure and function, International Congress Series, 2002, 1233, 251, 257
Библиографическая ссылка K. R. Rodgers, G. S. Lukat-Rodgers, Insights into heme-based O2 sensing from structure-function relationships in the FixL proteins, J. Inorg. Biochem., 2005, 99, 963, 977
Библиографическая ссылка S. A. Asher, UV Resonance Raman Spectroscopy, Anal. Chem., 1993, 65, 201, 211
Библиографическая ссылка G. S. Lukat, J. B. Stock, Response regulation in bacterial chemotaxis, J. Cell. Biochem., 1993, 51, 41, 46
Библиографическая ссылка C. Aubert, K. Brettel, P. Mathis, A. P. Eker, A. Boussac, Anacystis nidulans, J. Am. Chem. Soc., 1999, 121, 8659, 8660
Библиографическая ссылка L. Aravind, C. P. Ponting, The GAF domain: an evolutionary link between diverse phototransducing proteins, Trends Biochem. Sci., 1997, 22, 458, 459
Библиографическая ссылка S. E. Martinez, S. Bruder, A. Schultz, N. Zheng, J. E. Schultz, J. A. Beavo, J. U. Linder, Crystal structure of the tandem GAF domains from a cyanobacterial adenylyl cyclase: modes of ligand binding and dimerization, Proc. Nat. Acad. Sci. USA, 2005, 102, 3082, 3087
Библиографическая ссылка F. Janiak-Spens, D. P. Sparling, A. H. West, Novel role for an HPt domain in stabilizing the phosphorylated state of a response regulator domain, J. Bacteriol., 2000, 182, 6673, 6678
Библиографическая ссылка A. Matsushika, T. Mizuno, The structure and function of the histidine-containing phosphotransfer (HPt) signaling domain of the Escherichia coli ArcB sensor, J. Cell. Biochem., 1998, 124, 440, 445
Библиографическая ссылка M. A. Heim, M. Jakoby, M. Werber, C. Martin, B. Weisshaar, P. C. Bailey, The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity, Mol. Biol. Evol., 2003, 20, 735, 747
Библиографическая ссылка R. J. Kewley, M. L. Whitelaw, A. Chapman-Smith, The mammalian basic helix-loop-helix/PAS family of transcriptional regulators, Int. J. Biochem. Cell. B., 2004, 36, 189, 204
Библиографическая ссылка K. J. Hellingwerf, J. Hendriks, T. Gensch, Photoactive Yellow Protein, a new type of photoreceptor protein: will this â yellow labâ bring us where we want to go?, J. Phys. Chem. A, 2003, 107, 1082, 1094
Библиографическая ссылка M. Y. Galperin, A. N. Nikolskaya, E. V. Koonin, Novel domains of the prokaryotic two-component signal transduction systems, FEMS Microbiol. Lett., 2001, 203, 11, 21
Библиографическая ссылка N. Ausmees, R. Mayer, H. Weinhouse, G. Volman, D. Amikam, M. Benziman, M. Lindberg, Genetic data indicate that proteins containing the GGDEF domain possess diguanylate cyclase activity, FEMS Microbiol. Lett., 2001, 204, 163, 167
Библиографическая ссылка U. Römling, Molecular biology of cellulose production in bacteria, Res. Microbiol., 2002, 153, 205, 212
Библиографическая ссылка D. A. Dâ Argenio, S. I. Miller, Cyclic di-GMP as a bacterial second messenger, Microbiology, 2004, 150, 2497, 2502
Библиографическая ссылка D. A. Ryjenkov, M. Tarutina, O. V. Moskvin, M. Gomelsky, Cyclic Diguanylate Is a Ubiquitous Signaling Molecule in Bacteria: insights into Biochemistry of the GGDEF Protein Domain, J. Bacteriol., 2005, 187, 1792, 1798
Библиографическая ссылка S. Rajagopal, J. M. Key, E. B. Purcell, D. J. Boerema, K. Moffat, Escherichia coli, Photochem. Photobiol., 2004, 80, 542, 547
Библиографическая ссылка A. L. Chang, J. R. Tuckerman, G. Gonzalez, R. Mayer, H. Weinhouse, G. Volman, D. Amikam, M. Benziman, M. A. Gilles-Gonzalez, Acetobacter xylinum, Biochemistry, 2001, 40, 3420, 3426
Библиографическая ссылка M. A. Gilles-Gonzalez, G. Gonzalez, Heme-based sensors: defining characteristics, recent developments, and regulatory hypotheses, J. Inorg. Biochem., 2005, 99, 1, 22
Библиографическая ссылка P. Bork, N. P. Brown, H. Hegyi, J. Schultz, The protein phosphatase 2C (PP2C) superfamily: detection of bacterial homologues, Protein Sci., 1996, 5, 1421, 1425
Библиографическая ссылка K. Vijay, M. S. Brody, E. Fredlund, C. W. Price, Bacillus subtilis, Mol. Microbiol., 2000, 35, 180, 188
Библиографическая ссылка A. C. Ferreira, M. F. Nobre, E. Moore, F. A. Rainey, J. R. Battista, M. S. da Costa, Rubrobacter radiotolerans, Rubrobacter xylanophilus, Extremophiles, 1999, 3, 235, 238
Библиографическая ссылка R. W. Phillips, J. Wiegel, C. J. Berry, C. Fliermans, A. D. Peacock, D. C. White, L. J. Shimkets, Kineococcus radiotolerans sp., Int. J. Syst. Evol. Micr., 2002, 52, 933, 938
Библиографическая ссылка T. E. Swartz, P. J. Wenzel, S. B. Corchnoy, W. R. Briggs, R. A. Bogomolni, Vibration Spectroscopy Reveals Light-Induced Chromophore and Protein Structural Changes in the LOV2 Domain of the Plant Blue-Light Receptor Phototropin 1, Biochemistry, 2002, 41, 7183, 7189
Библиографическая ссылка S. M. Harper, L. C. Neil, K. H. Gardner, Structural basis of a phototropin light switch, Science, 2003, 301, 1541, 1544
Библиографическая ссылка S. M. Harper, J. M. Christie, K. H. Gardner, Disruption of the LOV-Jalpha helix interaction activates phototropin kinase activity, Biochemistry, 2004, 43, 16184, 16192
Библиографическая ссылка C. Combet, C. Blanchet, C. Geourjon, G. Deleage, NPS@: Network Protein Sequence Analysis, Trends Biochem. Sci., 2000, 25, 147, 150
Библиографическая ссылка W. Gong, B. Hao, S. S. Mansy, G. Gonzalez, M. A. Gilles-Gonzalez, M. K. Chan, Structure of a biological oxygen sensor: a new mechanism for heme-driven signal transduction, Proc. Nat. Acad. Sci. USA, 1998, 95, 15177, 15182
Библиографическая ссылка J. Key, K. Moffat, Crystal Structures of Deoxy and CO-Bound bjFixLH Reveal Details of Ligand Recognition and Signaling, Biochemistry, 2005, 44, 4627, 4635
Библиографическая ссылка M. Nakasako, D. Matsuoka, K. Zikihara, S. Tokutomi, Quaternary structure of LOV-domain containing polypeptide of Arabidopsis FKF1 protein, FEBS Lett., 2005, 579, 1067, 1071
Библиографическая ссылка M. Salomon, U. Lempert, W. Rüdiger, Dimerization of the plant photoreceptor phototropin is probably mediated by the LOV1 domain, FEBS Lett., 2004, 572, 8, 10
Библиографическая ссылка O. Yildiz, M. Doi, I. Yujnovsky, L. Cardone, A. Berndt, S. Hennig, S. Schulze, C. Urbanke, P. Sassone-Corsi, A. Wolf, Crystal structure and interactions of the PAS repeat region of the Drosophila clock protein PERIOD, Mol. Cell, 2005, 17, 69, 82
Библиографическая ссылка H. Park, C. Suquet, J. D. Satterlee, C. Kang, Insights into signal transduction involving PAS domain oxygen-sensing heme proteins from the X-ray crystal structure of Escherichia coli Dos heme domain (Ec DosH), Biochemistry, 2004, 43, 2738, 2746
Библиографическая ссылка J. L. Pellequer, K. A. Wager-Smith, S. A. Kay, E. D. Getzoff, Photoactive yellow protein: a structural prototype for the three-dimensional fold of the PAS domain superfamily, Proc. Nat. Acad. Sci. USA, 1998, 95, 5884, 5890
Библиографическая ссылка A. Repik, A. Rebbapragada, M. S. Johnson, J. O. Haznedar, I. B. Zhulin, B. L. Taylor, Escherichia coli, Mol. Microbiol., 2000, 36, 806, 816
Библиографическая ссылка C. A. Amezcua, S. M. Harper, J. Rutter, K. H. Gardner, Structure and Interactions of PAS Kinase N-Terminal PAS Domain: Model for Intramolecular Kinase Regulation, Structure, 2002, 10, 1349, 1361
Библиографическая ссылка K. Hitomi, K. Okamoto, H. Daiyasu, H. Miyashita, S. Iwai, H. Toh, M. Ishiura, T. Todo, Synechocystis sp., Nuc. Ac. Res., 2000, 28, 2353, 2362
Библиографическая ссылка T. Vishnivetskaya, S. Kathariou, J. McGrath, D. Gilichinsky, J. M. Tiedje, Low-temperature recovery strategies for the isolation of bacteria from ancient permafrost sediments, Extremophiles, 2000, 4, 165, 173
Библиографическая ссылка A. Mees, T. Klar, P. Gnau, U. Hennecke, A. P. M. Eker, T. Carell, L. O. Essen, in situ, Science, 2004, 306, 1789, 1793
Библиографическая ссылка Y. F. Li, P. F. Heelis, A. Sancar, in vitro, Biochemistry, 1991, 30, 6322, 6329
Библиографическая ссылка C. Aubert, P. Mathis, A. P. Eker, K. Brettel, Anacystis nidulans, Proc. Natl. Acad. Sci. USA, 1999, 96, 5423, 5427
Библиографическая ссылка C. Aubert, M. H. Vos, P. Mathis, A. P. Eker, K. Brettel, Intraprotein radical transfer during photoactivation of DNA photolyase, Nature, 2000, 405, 586, 590
Библиографическая ссылка M. Gomelsky, S. Kaplan, Molecular genetic analysis suggesting interactions between AppA and PpsR in regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1, J. Bacteriol., 1997, 179, 128, 134
Библиографическая ссылка C. Bauer, S. Elsen, L. R. Swem, D. L. Swem, S. Masuda, Redox and light regulation of gene expression in photosynthetic prokaryotes, Philos. T. Roy. Soc. B, 2003, 358, 147, 153
Библиографическая ссылка Y. Han, S. Braatsch, L. Osterloh, G. Klug, A eukaryotic BLUF domain mediates light-dependent gene expression in the purple bacterium Rhodobacter sphaeroides 2.4.1, Proc. Nat. Acad. Sci. USA, 2004, 101, 12306, 12311
Библиографическая ссылка B. J. Kraft, S. Masuda, J. Kikuchi, V. Dragnea, G. Tollin, J. M. Zaleski, C. E. Bauer, Spectroscopic and mutational analysis of the blue-light photoreceptor AppA: a novel photocycle involving flavin stacking with an aromatic amino acid, Biochemistry, 2003, 42, 6726, 6734
Библиографическая ссылка K. Hasegawa, S. Masuda, T. A. Ono, Synechocystis sp, Biochemistry, 2004, 43, 14979, 14986
Библиографическая ссылка K. Hasegawa, S. Masuda, T. A. Ono, Synechocystis sp., Plant and Cell Physiol., 2005, 46, 136, 146
Библиографическая ссылка W. Laan, M. A. van der Horst, I. H. van Stokkum, K. J. Hellingwerf, Initial characterization of the primary photochemistry of AppA, a blue-light-using flavin adenine dinucleotide-domain containing transcriptional antirepressor protein from Rhodobacter sphaeroides: a key role for reversible intramolecular proton transfer from the flavin adenine dinucleotide chromophore to a conserved tyrosine?, Photochem. Photobiol., 2003, 78, 290, 297
Библиографическая ссылка S. Masuda, K. Hasegawa, T. A. Ono, Light-induced structural changes of apoprotein and chromophore in the sensor of blue light using FAD (BLUF) domain of AppA for a signaling state, Biochemistry, 2005, 44, 1215, 1224
Библиографическая ссылка B. Stephan, K. Gabriele, Blue Light Perception in Bacteria, Photosynth. Res., 2004, 79, 45, 57
Библиографическая ссылка F. Ghetti, G. Checcucci, F. Lenci, Photosensitized reactions as primary molecular events in photomovements of microorganisms, J. Photochem. Photobiol. B: Biol., 1992, 15, 185, 198
Библиографическая ссылка S. Braatsch, O. V. Moskvin, G. Klug, M. Gomelsky, Rhodobacter sphaeroides, J. Bacteriol., 2004, 186, 7726, 7735
Библиографическая ссылка J. P. Armitage, K. Hellingwerf, Light-induced behavioral responses (â phototaxisâ ) in prokaryotes, Photosynth. Res., 2003, 76, 145, 155
Библиографическая ссылка R. Kort, W. Crielaard, J. L. Spudich, K. J. Hellingwerf, Color-sensitive motility and methanol release responses in Rhodobacter sphaeroides, J. Bacteriol., 2000, 182, 3017, 3021
Библиографическая ссылка J. A. Kyndt, T. E. Meyer, M. A. Cusanovich, Photoactive yellow protein, bacteriophytochrome, and sensory rhodopsin in purple phototrophic bacteria, Photochem. Photobiol. Sci., 2004, 3, 519, 530
Библиографическая ссылка R. P. Burchard, M. Dworkin, Light-induced lysis and carotenogenesis in Myxococcus xanthus, J. Bacteriol., 1966, 91, 535, 545
Библиографическая ссылка A. Martinez-Laborda, J. M. Balsalobre, M. Fontes, F. J. Murillo, Accumulation of carotenoids in structural and regulatory mutants of the bacterium Myxococcus xanthus, Mol. Gen. Genet., 1990, 223, 205, 210
Библиографическая ссылка D. F. Browning, D. E. Whitworth, D. A. Hodgson, Light-induced carotenogenesis in Myxococcus xanthus: functional characterization of the ECF sigma factor CarQ and antisigma factor CarR, Mol. Microbiol., 2003, 48, 237, 251
Библиографическая ссылка B. L. Taylor, D. E. J. Koshland, Salmonella typhimurium, Escherichia coli, J. Bacteriol., 1975, 123, 557, 569
Библиографическая ссылка H. Yang, A. Sasarman, H. Inokuchi, J. Adler, Escherichia coli, Proc. Nat. Acad. Sci. USA, 1996, 93, 2459, 2463
Библиографическая ссылка H. Yang, H. Inokuchi, J. Adler, Escherichia coli, Proc. Nat. Acad. Sci. USA, 1995, 92, 7332, 7336
Библиографическая ссылка C. Propst-Ricciuti, L. B. Lubin, Bacillus licheniformis, J. Bacteriol., 1976, 128, 506, 509
Библиографическая ссылка B. V. Futter, G. Richardson, Inactivation of bacterial spores by visible radiations, J. Appl. Bacteriol., 1967, 30, 347, 353
Библиографическая ссылка T. Neicu, A. Pradhan, D. A. Larochelle, A. Kudrolli, Extinction transition in bacterial colonies under forced convection, Phys. Rev., 2000, 62, 1059
Библиографическая ссылка A. M. Delprato, A. Samadani, A. Kudrolli, L. S. Tsimring, Swarming ring patterns in bacterial colonies exposed to ultraviolet radiation, Phys. Rev. Lett., 2001, 87, 158102
Библиографическая ссылка M. M. S. M. Wosten, Eubacterial sigma-factors, FEMS Microbiol. Rev., 1998, 22, 127, 150
Библиографическая ссылка C. W. Mullineaux, How do cyanobacteria sense and respond to light?, Mol. Microbiol., 2001, 41, 965, 971
Библиографическая ссылка T. Lamparter, Evolution of cyanobacterial and plant phytochromes, FEBS Lett., 2004, 573, 1, 5
Библиографическая ссылка D. M. Kehoe, A. R. Grossman, Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors, Science, 1996, 273, 1409, 1412
Библиографическая ссылка S. Yoshihara, M. Ikeuchi, Synechocystis sp, Photochem. Photobiol. Sci., 2004, 3, 512, 518
Библиографическая ссылка B. Fiedler, D. Broc, H. Schubert, A. Rediger, T. Borner, A. Wilde, Involvement of cyanobacterial phytochromes in growth under different light qualities and quantities, Photochem. Photobiol., 2004, 79, 551, 555
Библиографическая ссылка W. O. Ng, A. R. Grossman, D. Bhaya, Multiple Light Inputs Control Phototaxis in Synechocystis sp. Strain PCC6803, J. Bacteriol., 2003, 185, 1599, 1607
Библиографическая ссылка S. Yoshihara, M. Katayama, X. Geng, M. Ikeuchi, Cyanobacterial Phytochrome-like PixJ1 Holoprotein Shows Novel Reversible Photoconversion Between Blue- and Green-absorbing Forms, Plant Cell Physiol., 2004, 45, 1729, 1737
Библиографическая ссылка A. Wilde, B. Fiedler, T. Borner, The cyanobacterial phytochrome Cph2 inhibits phototaxis towards blue light, Mol. Microbiol., 2002, 44, 981, 988
Библиографическая ссылка J. S. Choi, Y. H. Chung, Y. J. Moon, C. Kim, M. Watanabe, P. S. Song, C. O. Joe, L. Bogorad, Y. M. Park, Synechocystis sp, Photochem. Photobiol., 1999, 70, 95, 102
Библиографическая ссылка S. Masuda, T. A. Ono, Synechocystis sp., FEBS Lett., 2004, 577, 255, 258
Библиографическая ссылка K. Terauchi, M. Ohmori, Blue light stimulates cyanobacterial motility via a cAMP signal transduction system, Mol. Microbiol., 2004, 52, 303, 309
Библиографическая ссылка H. Yoshimura, T. Hisabori, S. Yanagisawa, M. Ohmori, Identification and characterization of a novel cAMP receptor protein in the cyanobacterium Synechocystis sp. PCC 6803, J. Biol. Chem., 2000, 275, 6241, 6245
Библиографическая ссылка H. Yoshimura, S. Yoshihara, S. Okamoto, M. Ikeuchi, M. Ohmori, Synechocystis sp, Plant and Cell Physiol., 2002, 43, 460, 463
Библиографическая ссылка L. J. Stal, R. Moezelaar, Fermentation in cyanobacteria, FEMS Microbiol. Rev., 1997, 21, 179, 211
Библиографическая ссылка S. L. Anderson, L. McIntosh, Synechocystis sp., J. Bacteriol., 1991, 173, 2761, 2767
Библиографическая ссылка A. Wilde, Y. Churin, H. Schubert, T. Borner, Synechocystis sp., FEBS Lett., 1997, 406, 89, 92
Библиографическая ссылка N. S. Baliga, R. Bonneau, M. T. Facciotti, M. Pan, G. Glusman, E. W. Deutsch, P. Shannon, Y. Chiu, R. S. Weng, A. Gan, Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea, Genome Res., 2004, 14, 2221, 2234
Библиографическая ссылка C. R. Woese, B. A. Debrunner-Vossbrinck, H. Oyaizu, E. Stackebrandt, W. Ludwig, Gram-positive bacteria: possible photosynthetic ancestry, Science, 1985, 229, 762, 765
Библиографическая ссылка H. Ashida, Y. Saito, C. Kojima, K. Kobayashi, N. Ogasawara, A. Yokota, Bacillus, Science, 2003, 302, 286, 290
Библиографическая ссылка H. Ashida, A. Danchin, A. Yokota, Was photosynthetic RuBisCO recruited by acquisitive evolution from RuBisCO-like proteins involved in sulfur metabolism?, Res. Microbiol., 2005, 156, 611, 618
Библиографическая ссылка N. J. Mulder, R. Apweiler, T. K. Attwood, A. Bairoch, D. Barrel, A. Bateman, M. Biswas, P. Bradley, P. Bucher, R. R. Copley, E. Courcelle, U. Das, R. Durbin, L. Falquet, W. Fleischmann, S. Griffiths-Jones, D. Haft, N. Harte, N. Hulo, D. Kahn, A. Kanapin, M. Krestyaninova, R. Lopez, I. Letunic, D. Lonsdale, V. Silventoinen, S. E. Orchard, M. Pagni, D. Peyruc, C. P. Ponting, J. Selengut, F. Servant, C. J. Sigrist, R. Vaughan, E. M. Zdobnov, The InterPro Database, 2003 brings increased coverage and new features., Nucl. Acids Res., 2003, 31, 315, 318
Библиографическая ссылка J. D. Thompson, D. G. Higgins, T. J. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucl. Acids Res., 1994, 22, 4673, 4680
Библиографическая ссылка N. Guex, M. C. Peitsch, SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling, Electrophoresis, 1997, 18, 2714, 2723
Библиографическая ссылка B. Boeckmann, A. Bairoch, R. Apweiler, M. C. Blatter, A. Estreicher, E. Gasteiger, M. J. Martin, K. Michoud, C. O'Donovan, A. Phan, The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003, Nuc. Ac. Res., 2003, 31, 365, 370

Скрыть метаданые