Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Favre, Eric
Дата выпуска 2011
ISBN 978-1-84973-171-3
dc.description Carbon Capture & Sequestration (CCS) is a key issue in the reduction of greenhouse gases emissions. The capture step, which corresponds to the most expensive part of the technological chain, can be potentially achieved thanks to numerous processes (such as gas-liquid absorption in solvents, adsorption, cryogeny . . . ). Numerous strategies are currently explored in order to identify the most efficient and less expensive process, which could reach a high CO2 capture ratio (typically 80% or more), together with the production of a carbon dioxide stream of high purity (typically a CO2 volume fraction of 0.8 or more). From the energy requirement point of view, the EU has fixed 2 GJ (thermal basis) per ton of carbon dioxide captured as a target. In a first step, gas separation membranes have been discarded for this application, but recent studies suggest that they could possibly offer interesting potentialities.This chater proposes an overview and analyzes the pros and cons of polymeric membrane systems, with an emphasis on post combustion capture in an industrial context (e.g. power plants, steel or cement manufacturing). In a first part, the overall framework of CCS is presented (different sources, capture, transportation, storage) and the key issues of the capture step discussed. The simulation methodology of polymeric gas separation processes is exposed in a second part. Attention is focussed on key variables in process design (membrane selectivity, stage cut, pressure ratio, dimensionless surface area.â ¦) The major objectives of the capture process are quantitatively analysed in the next section: selectivity, energy requirement, capacity. Parametric sensitivity towards purity and carbon dioxide capture ratio is illustrated through some examples. At this stage, two basic strategies can be identified in order to achieve the targets: A single membrane stage approach, which most often requires a high CO2/N2 selectivity material (typically 100 or more),A multistage approach based on membrane materials which show a moderate CO2/N2 selectivity (classically 50 to 70)In the last part, unexplored issues and remaining challenges such as the sensitivity to minor flue gas components (oxygen, water, NOx, SOxâ ¦) or novel approaches based on hybrid processes are discussed. The key points raised throughout the above study, and the forthcoming challenges, are listed in the conclusion.
Формат application.pdf
Издатель Royal Society of Chemistry
Название Chapter 2. Simulation of Polymeric Membrane Systems for CO2 Capture
Тип other
DOI 10.1039/9781849733472-00029
Журнал Membrane Engineering for the Treatment of Gases: Gas-separation Problems with Membranes: Volume 1
Том 1
Первая страница 29
Последняя страница 57
Библиографическая ссылка R. Steeneveldt, 2, Chem. Eng. Res. Des., 2006, 84, 739, 763
Библиографическая ссылка A. Gabelman, Hollow fiber membrane contactors, J. Membr. Sci., 1999, 159, 61, 106
Библиографическая ссылка P. Feron, 2, Sep. Purif. Technol., 2002, 27, 231, 242
Библиографическая ссылка S. Stern, Polymers for gas separations: The next decade, J. Membr. Sci., 1994, 94, 1, 65
Библиографическая ссылка M. Sandru, 2, Desalination, 2009, 240, 298, 300
Библиографическая ссылка J. Zou, 2, J. Membr. Sci., 2006, 286, 310, 321
Библиографическая ссылка S. Reijerkerk, S. Highly hydrophilic, 2, Int. J. Greenhouse Gas Contr., 2011, 1, 26, 36
Библиографическая ссылка D. W. Barry, 2, Oil Gas J., 1985, 83, 96, 104
Библиографическая ссылка J. Johnson, Gas processing needs for EOR, Hydrocarbon Process, 1985, 64, 10, 62, 66
Библиографическая ссылка E. de Visser et al., et al, 2, Int. J. Greenhouse Gas Contr., 2008, 2, 478, 484
Библиографическая ссылка J. Lie, 2, Int. J. Greenhouse Gas Contr., 2007, 1, 309, 317
Библиографическая ссылка H. Herzog, What future for carbon capture and sequestration?, Environ. Sci. Technol., 2001, 35, 148A, 153A
Библиографическая ссылка A. Aspelund, 2, Int. J. Greenhouse Gas Contr., 2007, 1, 343, 354
Библиографическая ссылка D. Coker, Modeling multicomponent gas separation using hollow-fiber membrane contactors, AIChE J., 1998, 44, 1289, 1300
Библиографическая ссылка D. Coker, Nonisothermal model for gas separation hollow-fiber membranes, AIChE J., 1999, 45, 1451, 1468
Библиографическая ссылка S. Weller, Steiner, Separation of gases by fractional permeation through membranes, J. Appl. Phys., 1950, 21, 279, 283
Библиографическая ссылка S. Kaldis, Simulation of binary gas separation in hollow fiber asymmetric membranes by orthogonal collocation, J. Membr. Sci., 1998, 142, 43, 59
Библиографическая ссылка D. Chang, Perturbation solution of hollow-fiber membrane module for pure gas permeation, J. Membr. Sci., 1998, 143, 53, 64
Библиографическая ссылка A. Kovvali, Models and analyses of membrane gas permeators, J. Membr. Sci., 1992, 73, 1, 23
Библиографическая ссылка E. Favre, Carbon dioxide recovery from post-combustion processes: Can gas permeation membranes compete with absorption?, J. Membr. Sci., 2007, 294, 50, 59
Библиографическая ссылка E. Favre, 2, 2, Ind. Eng. Chem. Res., 2009, 48, 3700, 3701
Библиографическая ссылка L. Robeson, Correlation of separation factor versus permeability for polymeric membranes, J. Membr. Sci., 1991, 62, 165, 185
Библиографическая ссылка T. Merkel, Power plant post-combustion carbon dioxide capture: An opportunity for membranes, J. Membr. Sci., 2010, 359, 126, 139
Библиографическая ссылка W. Koros, Membrane-based gas separation, J. Membr. Sci, 1993, 83, 1, 80
Библиографическая ссылка H. Herzog, 2, Enviro. Prog., 1991, 10, 64, 74
Библиографическая ссылка J. Van Der Sluijs, Feasibility of polymer membranes for carbon dioxide recovery from flue gases, Energy Conversion Manage, 1992, 33, 429, 436
Библиографическая ссылка M. Hägg, 2, Ind. Eng. Chem. Res., 2005, 44, 7668, 7675
Библиографическая ссылка R. Bounaceur, R. Membrane processes for post-combustion carbon dioxide capture: A parametric study, Energy, 2006, 31, 2220, 2234
Библиографическая ссылка M. Ho, 2, Ind. Eng. Chem. Res., 2006, 45, 2546, 2552
Библиографическая ссылка L. Zhao, 2, 2, J. Membr. Sci., 2008, 325, 284, 294
Библиографическая ссылка J. Kotowicz, 2, Energy, 2010, 35, 841, 850
Библиографическая ссылка A. Brunetti, 2, J. Membr. Sci., 2010, 359, 115, 125
Библиографическая ссылка S. Matson, Separation of gases with synthetic membranes, Chem. Eng. Sci., 1983, 38, 503, 524
Библиографическая ссылка L. Zanderighi, Evaluation of the performance of multistage membrane separation cascades, Sep. Sci. Technol., 1996, 31, 1291, 1308
Библиографическая ссылка M. Ho, 2, Ind. Eng. Chem. Res., 2008, 47, 1562, 1568
Библиографическая ссылка L. Zhao, Multi-stage gas separation membrane processes used in post-combustion capture: Energetic and economic analyses, J. Membr. Sci., 2010, 359, 160, 172
Библиографическая ссылка A. Hussain, 2, J. Membr. Sci., 2010, 359, 140, 148
Библиографическая ссылка H. Lin, 2, J. Mol. Struct., 2005, 739, 57, 74
Библиографическая ссылка W. Yave, 2, Macromolecules, 2010, 43, 326, 333
Библиографическая ссылка H. Lin, Effect of copolymer composition, temperature, and carbon dioxide fugacity on pure- and mixed-gas permeability in poly(ethylene glycol)-based materials: Free volume interpretation, J. Membr. Sci., 2007, 291, 131, 139
Библиографическая ссылка A. Ebner, State-of-the-art adsorption and membrane separation processes for carbon dioxide production from carbon dioxide emitting industries, Sep. Sci. Technol., 2009, 44, 1273, 1421
Библиографическая ссылка M. Pera-Titus, 2, Ind. Eng. Chem. Res., 2009, 48, 9215, 9223
Библиографическая ссылка G. Xomeritakis, Microporous sol-gel derived aminosilicate membrane for enhanced carbon dioxide separation, Sep. Purif. Technol., 2005, 42, 249, 257
Библиографическая ссылка R. Krishna, 2, J. Membr. Sci., 2010, 360, 323, 333
Библиографическая ссылка M. Bram, Testing of nanostructured gas separation membranes in the flue gas of a post-combustion power plant, Int. J. Greenhouse Gas Contr., 2011, 1, 37, 48
Библиографическая ссылка L. Robeson, The upper bound revisited, J. Membr. Sci., 2008, 320, 390, 400
Библиографическая ссылка B. Freeman, Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes, Macromolecules, 1999, 32, 375, 380
Библиографическая ссылка L. Deng, 2, Desalination, 2006, 199, 523, 524
Библиографическая ссылка D. Grainger, 2, 2, Fuel, 2008, 87, 14, 24
Библиографическая ссылка J. Huang, 2, Ind. Eng. Chem. Res., 2008, 47, 1261, 1267
Библиографическая ссылка M. Trachtenberg, Carbon dioxide transport by proteic and facilitated transport membranes, Life Support Biosphere Sci.: Int. J. Earth Space, 1999, 6, 293, 302
Библиографическая ссылка J. Potreck, Mixed water vapor/gas transport through the rubbery polymer PEBAX® 1074, J. Membr. Sci., 2009, 338, 11, 16
Библиографическая ссылка C. Pan, Permeation of water vapor through cellulose triacetate membranes in hollow fiber form, J. Appl. Polym. Sci., 1978, 22, 2307, 2323
Библиографическая ссылка C. Scholes, Effects of minor components in carbon dioxide capture using polymeric gas separation membranes, Sep. Purif. Rev., 2009, 38, 1, 44
Библиографическая ссылка R. McKee, 2, Hydrocarbon Process, 1991, 70, 4, 63, 65
Библиографическая ссылка E. Favre, A hybrid process combining oxygen enriched air combustion and membrane separation for post-combustion carbon dioxide capture, Sep. Purif. Technol., 2009, 68, 30, 36
Библиографическая ссылка E. Favre, Biogas, membranes and carbon dioxide capture, J. Membr. Sci., 2009, 328, 11, 14

Скрыть метаданые