Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Choi, Charles J.
Автор Cunningham, Brian T.
Дата выпуска 2007
dc.description A nanoreplica molding process has been used to produce polymer microfluidic channels, with integrated label-free photonic crystal biosensors as the bottom surface of the channels. Multiple flow channels are gathered in parallel so that an imaging detection instrument may simultaneously monitor the binding kinetics of many biomolecular interactions. In this work, the flow channel pattern has been adapted to a 96-well microplate format in which, for each 12-element row of the microplate, a single well serves as a common access port for 11 flow channels that are connected to separate microplate wells. Application of pneumatic pressure or suction to the common well serves to drive forward or backward flow to the channels. The system is demonstrated by measuring the kinetic binding interaction of protein A with IgG molecules of high, medium, and low affinity. The approach offers a means for minimizing the volume of reagent required to functionalize the biosensor surface, while retaining compatibility with the microplate assay fluid-handling methods that are most commonly used in biological research.
Формат application.pdf
Издатель Royal Society of Chemistry
Название A 96-well microplate incorporating a replica molded microfluidic network integrated with photonic crystal biosensors for high throughput kinetic biomolecular interaction analysis
Тип research-article
DOI 10.1039/b618584c
Electronic ISSN 1473-0189
Print ISSN 1473-0197
Журнал Lab on a Chip
Том 7
Первая страница 550
Последняя страница 556
Аффилиация Choi Charles J.; Nano Sensors Group, Department of Electrical and Computer Engineering, University of Illinois at Urbanaâ Champaign Micro and Nanotechnology Laboratory 208 N. Wright St. Urbana
Аффилиация Cunningham Brian T.; Nano Sensors Group, Department of Electrical and Computer Engineering, University of Illinois at Urbanaâ Champaign Micro and Nanotechnology Laboratory 208 N. Wright St. Urbana
Выпуск 5
Библиографическая ссылка Cooper, Nat. Biotechnol., 2001, 19, 833
Библиографическая ссылка Smith, Appl. Spectrosc., 2003, 57, 320A
Библиографическая ссылка Cunningham, Sens. Actuators, B, 2002, 81, 316
Библиографическая ссылка Cunningham, Sens. Actuators, B, 2002, 85, 219
Библиографическая ссылка Cunningham, Sens. Actuators, B, 2002, 87, 365
Библиографическая ссылка Cunningham, J. Biomol. Screen., 2004, 9, 481
Библиографическая ссылка Zheng, Nat. Biotechnol., 2005, 23, 1294
Библиографическая ссылка Berggren, Electroanalysis, 2001, 13, 173
Библиографическая ссылка Hoummady, Smart Mater. Struct., 1997, 6, 647
Библиографическая ссылка Lofas, Sens. Actuators, B, 1991, 5, 79
Библиографическая ссылка Burns, Science, 1998, 282, 484
Библиографическая ссылка Lagally, Lab Chip, 2001, 1, 102
Библиографическая ссылка Ryu, Appl. Phys. Lett., 2006, 88,
Библиографическая ссылка Chinowsky, Sens. Actuators, B, 2003, 91, 266
Библиографическая ссылка Myszka, Anal. Biochem., 2004, 329, 316
Библиографическая ссылка Brockman, Am. Lab., 2001, 33, 37
Библиографическая ссылка Cunningham, Exp. Rev. Proteomics, 2006, 3, 271
Библиографическая ссылка Lin, Sens. Actuators, B, 2006, 114, 559
Библиографическая ссылка Choi, Lab Chip, 2006, 6, 1373
Библиографическая ссылка Glaser, Anal. Biochem., 1993, 213, 152

Скрыть метаданые