Автор |
Choi, Charles J. |
Автор |
Cunningham, Brian T. |
Дата выпуска |
2007 |
dc.description |
A nanoreplica molding process has been used to produce polymer microfluidic channels, with integrated label-free photonic crystal biosensors as the bottom surface of the channels. Multiple flow channels are gathered in parallel so that an imaging detection instrument may simultaneously monitor the binding kinetics of many biomolecular interactions. In this work, the flow channel pattern has been adapted to a 96-well microplate format in which, for each 12-element row of the microplate, a single well serves as a common access port for 11 flow channels that are connected to separate microplate wells. Application of pneumatic pressure or suction to the common well serves to drive forward or backward flow to the channels. The system is demonstrated by measuring the kinetic binding interaction of protein A with IgG molecules of high, medium, and low affinity. The approach offers a means for minimizing the volume of reagent required to functionalize the biosensor surface, while retaining compatibility with the microplate assay fluid-handling methods that are most commonly used in biological research. |
Формат |
application.pdf |
Издатель |
Royal Society of Chemistry |
Название |
A 96-well microplate incorporating a replica molded microfluidic network integrated with photonic crystal biosensors for high throughput kinetic biomolecular interaction analysis |
Тип |
research-article |
DOI |
10.1039/b618584c |
Electronic ISSN |
1473-0189 |
Print ISSN |
1473-0197 |
Журнал |
Lab on a Chip |
Том |
7 |
Первая страница |
550 |
Последняя страница |
556 |
Аффилиация |
Choi Charles J.; Nano Sensors Group, Department of Electrical and Computer Engineering, University of Illinois at Urbanaâ Champaign Micro and Nanotechnology Laboratory 208 N. Wright St. Urbana |
Аффилиация |
Cunningham Brian T.; Nano Sensors Group, Department of Electrical and Computer Engineering, University of Illinois at Urbanaâ Champaign Micro and Nanotechnology Laboratory 208 N. Wright St. Urbana |
Выпуск |
5 |
Библиографическая ссылка |
Cooper, Nat. Biotechnol., 2001, 19, 833 |
Библиографическая ссылка |
Smith, Appl. Spectrosc., 2003, 57, 320A |
Библиографическая ссылка |
Cunningham, Sens. Actuators, B, 2002, 81, 316 |
Библиографическая ссылка |
Cunningham, Sens. Actuators, B, 2002, 85, 219 |
Библиографическая ссылка |
Cunningham, Sens. Actuators, B, 2002, 87, 365 |
Библиографическая ссылка |
Cunningham, J. Biomol. Screen., 2004, 9, 481 |
Библиографическая ссылка |
Zheng, Nat. Biotechnol., 2005, 23, 1294 |
Библиографическая ссылка |
Berggren, Electroanalysis, 2001, 13, 173 |
Библиографическая ссылка |
Hoummady, Smart Mater. Struct., 1997, 6, 647 |
Библиографическая ссылка |
Lofas, Sens. Actuators, B, 1991, 5, 79 |
Библиографическая ссылка |
Burns, Science, 1998, 282, 484 |
Библиографическая ссылка |
Lagally, Lab Chip, 2001, 1, 102 |
Библиографическая ссылка |
Ryu, Appl. Phys. Lett., 2006, 88, |
Библиографическая ссылка |
Chinowsky, Sens. Actuators, B, 2003, 91, 266 |
Библиографическая ссылка |
Myszka, Anal. Biochem., 2004, 329, 316 |
Библиографическая ссылка |
Brockman, Am. Lab., 2001, 33, 37 |
Библиографическая ссылка |
Cunningham, Exp. Rev. Proteomics, 2006, 3, 271 |
Библиографическая ссылка |
Lin, Sens. Actuators, B, 2006, 114, 559 |
Библиографическая ссылка |
Choi, Lab Chip, 2006, 6, 1373 |
Библиографическая ссылка |
Glaser, Anal. Biochem., 1993, 213, 152 |