Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Stevenson, Adrian C.
Автор Mehta, Hiren M.
Автор Sethi, Rajinder S.
Автор Lowe, Christopher R.
Автор Cheran, Larisa-Emilia
Автор Thompson, Michael
Автор Davies, Ian
Дата выпуска 2001
dc.description This paper considers the propagation of high frequency 0.1â 2.6 GHz surface acoustic wave pulses in aqueous solutions of pure water, glycerol and protein. The GHz frequency components of the pulse are used to provide the highest operating frequencies so far reported and also to construct the first acoustic absorption spectrum associated with the evanescent field. Acoustic generation is sourced from a single non-linear SAW device that provides a series of harmonic frequencies, simultaneously. The received power level is determined from digital samples of the received pulse waveform. The power leaked into glycerol solutions at the fundamental frequency was found to be 50% smaller for pulses, than for continuous acoustic waves, an effect that could be related to the equilibration of the evanescent field. Increasing the concentration of the glycerol solutions or time exposed to the protein (IgG) solution, showed that the power losses from the surface acoustic wave pulse were broadly consistent with the behaviour of transverse shear mode sensors. Atomic force microscope measurements of the bare device revealed that the morphology of the silica overlayer was uniformly granular, whereas adsorbed protein films formed non-contiguous islands. Confirmation of the presence of the IgG film was obtained from quantitative X-ray photoelectron spectroscopy. An 8 gigasample per second digitising oscilloscope running a fast Fourier transform routine captured the acoustic absorption spectrum, and revealed a smooth characteristic for the glycerol and IgG, although for the latter, frequencies beyond 500 MHz were associated with an irregular spectrum. These multiple frequency measurements of the solidâ liquid interface provide evidence that when the penetration depth and film thickness are similar, disruption of the predicted exponential form of the evanescent wave occurs, as indicated by the fluctuations seen in the absorption spectrum recorded. These preliminary results have shown that multiple frequency operation of single non-linear SH-SAW devices is possible, and an evanescent interfacial absorption spectrum can be obtained. By extending the measurement technique it may be possible to obtain additional information about the structure and composition of the solidâ liquid interface.
Формат application.pdf
Издатель Royal Society of Chemistry
Название Gigahertz surface acoustic wave probe for chemical analysis
Тип research-article
DOI 10.1039/b107062b
Electronic ISSN 1364-5528
Print ISSN 0003-2654
Журнал Analyst
Том 126
Первая страница 1619
Последняя страница 1624
Аффилиация Stevenson Adrian C.; Institute of Biotechnology, University of Cambridge
Аффилиация Mehta Hiren M.; Institute of Biotechnology, University of Cambridge
Аффилиация Sethi Rajinder S.; Institute of Biotechnology, University of Cambridge
Аффилиация Cheran Larisa-Emilia; Department of Chemistry, University of Toronto
Аффилиация Thompson Michael; Department of Chemistry, University of Toronto
Аффилиация Davies Ian; Marconi Research Caswell Ltd
Аффилиация Lowe Christopher R.; Institute of Biotechnology, University of Cambridge
Выпуск 10
Библиографическая ссылка G. Sauerbrey, Z. Phys. Chem., 1959, 155, 206
Библиографическая ссылка A. Shons, F. Dorman, J. Najarian, J. Biomed. Mater. Res., 1972, 6, 565
Библиографическая ссылка K. Kanazawa, J. Gordon, Anal. Chim. Acta, 1985, 157, 99
Библиографическая ссылка M. Thompson, C. Arthur, G. Dhaliwal, Anal. Chem., 1986, 58, 1206
Библиографическая ссылка F. Hook, C. Fant, M. Rodahl, Abstracts of papers of the Am. Chem. Soc., 2000, 219, 459
Библиографическая ссылка S. Martin, W. Wenzel, R. White, Sens. Actuators A, 1990, A21â 23, 704
Библиографическая ссылка J. Kondoh, Y. Matsui, S. Shiokawa, Jpn. J. Appl. Phys., 1993, 32, 5B, 2376
Библиографическая ссылка M. S. Yang, F. L. Chung, M. Thompson, Anal. Chem., 1993, 65, 24, 3713
Библиографическая ссылка M. V. Voinova, M. Rodahl, M. Jonson, B. Kasemo, Phys. Scr., 1999, 59, 5, 391
Библиографическая ссылка B. W. Maxfield, A. Kuramoto, J. K. Hulbert, Mater. Eval., 1987, 45, 10, 1166
Библиографическая ссылка M. Rodahl, F. Hook, C. Fredriksson, C. A. Keller, A. Krozer, P. Brzezinski, M. Voinova, B. Kasemo, Faraday Discuss., 1997, 107, 229
Библиографическая ссылка G McHale, MI Newton, MK Banerjee, SM Rowan, Faraday Discuss., 1997, 107, 15
Библиографическая ссылка M. I. Newton, F. Martin, K. Melzak, E. Gizeli, G. McHale, Electron. Lett., 2001, 36, 340
Библиографическая ссылка I. Alig, D. Lellinger, J. Sulimma, S. Tadjbakhsch, Rev. Sci. Instrum., 1997, 68, 3, 1536
Библиографическая ссылка W. C. Duncan-Hewitt, M. Thompson, Anal. Chem., 1992, 64, 94
Библиографическая ссылка S. J. Martin, Faraday Discuss., 1997, 107, 27
Библиографическая ссылка G. L. Hayward, M. Thompson, J. Appl. Phys., 1998, 83, 2194
Библиографическая ссылка M. Thompson, G. K. Dhaliwal, C. Arthur, G. Calabrese, IEEE Trans. UFFC, 1987, 34, 127
Библиографическая ссылка N. Kalyanasundaram, G. V. Anand, J. Acoust. Soc. Am., 1982, 72, 5, 1518
Библиографическая ссылка V. Kavalerov, T. Fujii, M. Inoue, J. Appl. Phys., 2000, 87, 2, 907
Библиографическая ссылка F. Herrmann, D. Hahn, S. Buttgenbach, Sens. Actuators A, 1999, 78, 2â 3, 99
Библиографическая ссылка H. Moritake, M. Inoue, K. Toda, Jpn. J. Appl. Phys., 1997, 36, 9B, 6088
Библиографическая ссылка J. Du, G. Harding, J. Ogilvy, P. Dencher, M. Lake, Sens. Actuators A, 1996, 56, 3, 211
Библиографическая ссылка P. Kielczynski, J. Appl. Phys., 1997, 82, 12, 5932
Библиографическая ссылка C. McMullan, H. Mehta, E. Gizeli, C. R. Lowe, J. Phys. D: Appl. Phys., 2000, 33, 23, 3053
Библиографическая ссылка R. Behrends, U. Kaatze, J. Phys. Chem. A, 2000, 104, 3269
Библиографическая ссылка K. Menzel, A. Rupprecht, U. Kaatze, J. Acoust. Soc. Am., 1998, 104, 5, 2471
Библиографическая ссылка S. Granick, Science (Washington D.C.), 1991, 253, 1374
Библиографическая ссылка T. L. Szabo, J. Wu, J..Acoust. Soc. Am., 2000, 107, 5, 2437
Библиографическая ссылка F. Bender, R. Dahint, F. Josse, A. Ricco, S. Martin, Anal. Chem., 1999, 22, 5064
Библиографическая ссылка G. Harding, J. Du, P. Dencher, D. Barnett, E. Howe, Sens. Actuators A, 1997, 61, 1â 3, 279
Библиографическая ссылка A. Wang, R. Kiwan, R. White, R. Ceriani, Sens. Actutators B, 1998, 49, 1â 2, 13

Скрыть метаданые