Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Félix, Vitor
Автор Costa, Judite
Автор Delgado, Rita
Автор Drew, Michael G. B.
Автор Duarte, Maria Teresa
Автор Resende, Catarina
Дата выпуска 2001
dc.description The single crystal structures of complexes [CuL<sup>1</sup>Br]ClO4 1, [CuL<sup>2</sup>Br]PF6 2, and [NiL<sup>2</sup>][ClO4]2 3 were determined (L<sup>1</sup> is 3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene and L<sup>2</sup> is 3,6,10,16-tetraazabicyclo[10.3.1]hexadeca-1(16),12,14-triene). The asymmetric unit of 1 contains two [CuL<sup>1</sup>Br]<sup>+</sup> cations having different five-co-ordinated environments. One (A) exhibits a distorted square pyramidal arrangement, with the basal plane defined by three nitrogen atoms of the macrocycle and the bromine, and the apical position occupied by the nitrogen opposite to the pyridine ring. In the other (B) the donor atoms are distorted from this geometry towards a trigonal bipyramid with the equatorial plane formed by two nitrogen atoms of the macrocycle and Br, and the axial positions occupied by the nitrogen atoms contiguous to the pyridine ring. The complex cation [CuL<sup>2</sup>Br]<sup>+</sup> 2 exhibits a distorted square pyramidal environment with the basal plane defined by the four nitrogen atoms of the macrocycle and the apical co-ordination by the bromine atom. In [NiL<sup>2</sup>]<sup>2+</sup> 3 the four nitrogen atoms of the macrocycle form a distorted square planar environment around the nickel centre. Molecular mechanics calculations are used to determine the best-fit sizes for metal ions accommodated into L<sup>1</sup> and L<sup>2</sup> by evaluation of all sterically allowed conformers for five-co-ordination geometry. The results obtained, together with those of L<sup>3</sup> (3,7,11,17-tetraazabicyclo[11.3.1]heptadeca-1(17),13,15-triene), published previously, clearly establish the effect of macrocyclic cavity size on metal ion selectivity. These macrocycles prefer a planar conformation to accommodate small metal ions but folded conformations are preferred for longer Mâ N distances. The increase of the macrocyclic cavity size leads to an increase of the Mâ N(sp<sup>3</sup>) distances at which the folded conformer(s) become the most stable form: 1.90, 2.14 and 2.18 Ã for 12-, 13- and 14-membered macrocycles, respectively.
Формат application.pdf
Издатель Royal Society of Chemistry
Название X-Ray diffraction and molecular mechanics studies of 12-, 13-, and 14-membered tetraaza macrocycles containing pyridine: effect of the macrocyclic cavity size on the selectivity of the metal ion
Тип ART
Журнал Dalton Transactions
Первая страница 1462
Последняя страница 1471
Аффилиация Félix Vitor; Dep. de Química, Universidade de Aveiro
Аффилиация Costa Judite; Instituto de Tecnologia Química e Biológica, UNL; Faculdade de Farmácia de Lisboa
Аффилиация Delgado Rita; Instituto de Tecnologia Química e Biológica, UNL; Instituto Superior Técnico
Аффилиация Drew Michael G. B.; Department of Chemistry, University of Reading
Аффилиация Duarte Maria Teresa; Instituto Superior Técnico; Centro de Química Estrutural
Аффилиация Resende Catarina; Centro de Química Estrutural
Выпуск 9
Библиографическая ссылка J. Costa, R. Delgado, Inorg. Chem., 1993, 32, 5257
Библиографическая ссылка V. Félix, M. J. Calhorda, J. Costa, R. Delgado, C. Brito, M. T. Duarte, T. Arcos, M. G. B. Drew, J. Chem. Soc., Dalton Trans., 1996, 4543
Библиографическая ссылка R. Delgado, S. Quintino, M. Teixeira, A. Zhang, J. Chem. Soc., Dalton Trans., 1997, 55
Библиографическая ссылка J. Costa, R. Delgado, M. C. Figueira, R. T. Henriques, M. Teixeira, J. Chem. Soc., Dalton Trans., 1997, 65
Библиографическая ссылка J. Costa, R. Delgado, M. G. B. Drew, V. Félix, J. Chem. Soc., Dalton Trans., 1998, 1063
Библиографическая ссылка J. Costa, R. Delgado, M. G. B. Drew, V. Félix, R. T. Henriques, J. C. Waerenborgh, J. Chem. Soc., Dalton Trans., 1999, 3253
Библиографическая ссылка J. Costa, R. Delgado, M. G. B. Drew, V. Félix, J. Chem. Soc., Dalton Trans., 1999, 4331
Библиографическая ссылка J. Costa, R. Delgado, M. G. B. Drew, V. Félix, A. Saint-Maurice, J. Chem. Soc., Dalton Trans., 2000, 1907
Библиографическая ссылка F. H. Allen, J. E. Davies, J. J. Galloy, O. Johnson, O. Kennard, C. F. Macrae, E. M. Mitchell, G. F. Mitchel, J. M. Smith, D. G. Watson, J. Chem. Inf. Comput. Sci., 1991, 31, 187
Библиографическая ссылка W. D. Kim, D. C. Hrncir, G. E. Kiefer, A. D. Sherry, Inorg. Chem., 1995, 34, 2225
Библиографическая ссылка Yu. A. Simonov, M. S. Fonarâ , V. Kh. Kravtsov, V. O. Gelâ mbolâ dt, E. V. Ganin, L. O. Ostapchuk, A. A. Ennan, Yu. A. Popkov, Ya. Lipkovskii, Zh. Neorg. Khim., 1998, 43, 1982
Библиографическая ссылка V. O. Gelâ mbolâ dt, Yu. A. Simonov, E. V. Ganin, A. A. Dvorkin, Ya. Lipkovski, Yu. A. Popkov, Koord. Khim., 1998, 23, 720
Библиографическая ссылка A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddard III, W. M. Skiff, J. Am. Chem. Soc., 1992, 114, 10024
Библиографическая ссылка V. J. Thöm, C. C. Fox, J. C. A. Boeyens, R. D. Hancock, J. Am. Chem. Soc., 1984, 106, 5947
Библиографическая ссылка W. Kabsch, J. Appl. Crystallogr., 1988, 21, 916

Скрыть метаданые