Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Nag, Abanti
Автор Kutty, T. R. N.
Дата выпуска 2004
dc.description Sr2SiO4 â ¶ Eu<sup>3+</sup> shows orange-red emission of Eu<sup>3+</sup> substitutively present in two different Sr sites. The light-induced spectral changes from orange-red sharp line emission to yellow-white broad band are observed in Sr2SiO4 â ¶ Eu at room temperature under irradiation with short UV or X-rays. The spectral changes are attributed to the optically assisted reduction of Eu<sup>3+</sup> â Eu<sup>2+</sup>. The photoreduced Sr2SiO4 â ¶ Eu shows emission containing contributions from both Eu<sup>2+</sup> and Eu<sup>3+</sup> in comparison to chemically reduced samples. This is explained on the basis of preferential reduction of Eu<sup>3+</sup> present in Sr(1) sites under irradiation due to unsatisfied EuSrâ Oâ Si bonds. The absence of photoactivity for Ba2SiO4 â ¶ Eu<sup>3+</sup> (space group = Pnam) as well as Ca2SiO4 â ¶ Eu<sup>3+</sup> (space group = P21/n) indicates that crystal structure plays an important role in the photoreduction of Sr2SiO4 â ¶ Eu<sup>3+</sup> because of the prevailing orientational as well as the positional disorder in the latter. Further, the orientationally disordered monoclinic random domains persist within the orthorhombic lattice of Sr2SiO4, resulting in the positionally disordered Sr atoms and orientationally disordered SiO4 tetrahedra. Electron paramagnetic resonance studies confirm the electron trapping by dynamically disordered (SiO4)<sup>4â </sup> under high energy photon illumination resulting in the formation of radical anion (SiO4)<sup>5â </sup>. The substitutional studies indicate that the [Eu<sup>3+</sup> â O<sup>2â </sup>] charge-transfer (CT) state is directly involved in the photoreduction process. The excitation of Sr2SiO4 â ¶ Eu<sup>3+</sup> produces the [Eu<sup>3+</sup> â O<sup>2â </sup>] CT state which relaxes and transfers electrons to SiO4 groups due to optically assisted rearrangement of local environment and mediates the electron transfer process to cause photoreduction of Eu<sup>3+</sup> to Eu<sup>2+</sup>. The yellow emission is stable at room temperature and reverts to red on annealing at elevated temperature in Ar atmosphere due to thermally activated detrapping of charge carriers present at the defect centers which, in turn, convert Eu<sup>2+</sup> to Eu<sup>3+</sup>. The thermally activated conversion of Eu<sup>2+</sup> â Eu<sup>3+</sup> in Sr2SiO4 is optically reversible, thereby resulting in a highly efficient material for application as an optical storage medium.
Формат application.pdf
Издатель Royal Society of Chemistry
Название The light induced valence change of europium in Sr2SiO4 ? Eu involving transient crystal structureElectronic supplementary information (ESI) available: details of the experiment under different irradiation conditions, characterization by XRD and PL spectra of Ba2SiO4 ? Eu3+ and Ca2SiO4 ? Eu3+. See http://www.rsc.org/suppdata/jm/b4/b400515e/
Тип research-article
DOI 10.1039/b400515e
Electronic ISSN 1364-5501
Print ISSN 0959-9428
Журнал Journal of Materials Chemistry
Том 14
Первая страница 1598
Последняя страница 1604
Аффилиация Nag Abanti; Materials Research Centre, Indian Institute of Science
Аффилиация Kutty T. R. N.; Materials Research Centre, Indian Institute of Science
Выпуск 10
Библиографическая ссылка T. Jüstel, H. Nikol, C. Ronda, Angew. Chem., Int. Ed., 1998, 37, 3084
Библиографическая ссылка C. D. Müller, A. Falcou, N. Reckefuss, M. Rojahn, V. Wiederhirn, P. Rudati, H. Frohne, O. Nuyken, H. Becker, K. Meerholz, Nature, 2003, 421, 829
Библиографическая ссылка E. Betzig, J. K. Trautman, Science, 1992, 257, 189
Библиографическая ссылка A. Nag, T. R. N. Kutty, J. Mater. Chem., 2003, 13, 370
Библиографическая ссылка A. Nag, T. R. N. Kutty, J. Alloys Compd., 2003, 354, 221
Библиографическая ссылка J. K. Park, M. A. Lim, C. H. Kim, H. D. Park, J. T. Park, S. Y. Choi, Appl. Phys. Lett., 2003, 82, 683
Библиографическая ссылка E. D. Bacce, A. M. Pires, M. R. Davolos, J. Alloys Compd., 2002, 344, 312
Библиографическая ссылка G. Blasse, W. L. Wanmaker, J. W. ter Vrugt, A. Bril, Philips Res. Rep., 1968, 23, 189
Библиографическая ссылка S. H. M. Poort, W. Janssen, G. Blasse, J. Alloys Compd., 1997, 260, 93
Библиографическая ссылка M. Catti, G. Gazzoni, G. Ivaldi, Acta Crystallogr., Sect. C, 1983, 39, 29
Библиографическая ссылка R. D. Shannon, Acta Crystallogr., Sect. A, 1976, 32, 751
Библиографическая ссылка B. G. Hyde, J. R. Sellar, L. Stenberg, Acta Crystallogr., Sect. B, 1986, 42, 423
Библиографическая ссылка M. Handke, M. Urban, J. Mol. Struct., 1982, 79, 353
Библиографическая ссылка F. M. Ryan, W. Lehmann, D. W. Feldman, J. Murphy, J. Electrochem. Soc., 1974, 121, 1474
Библиографическая ссылка M. Peng, Z. Pei, G. Hong, Q. Su, J. Mater. Chem., 2003, 13, 1202
Библиографическая ссылка E. Collet, M. Lemée-Cailleau, M. B. Cointe, H. Cailleau, M. Wúlff, T. Luty, S. Koshihara, M. Meyer, L. Toupet, P. Rabiller, S. Techert, Science, 2003, 300, 612
Библиографическая ссылка E. Danielson, M. Devenney, D. M. Giaquinta, J. H. Golden, R. C. Haushalter, E. W. McFarland, D. M. Poojary, C. M. Reaves, W. H. Weinberg, X. D. Wu, Science, 1998, 279, 837
Библиографическая ссылка T. R. N. Kutty, R. Jagannathan, R. P. Rao, Mater. Res. Bull., 1990, 25, 1355

Скрыть метаданые