Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Koumura, Yoshiko
Автор Suzuki, Takeshi
Автор Yoshikawa, Shinya
Автор Watanabe, Masakatsu
Автор Iseki, Mineo
Дата выпуска 2004
dc.description Photoactivated adenylyl cyclase (PAC) is the blue-light receptor flavoprotein recently identified as a photoreceptor for photoavoidance of the unicellular flagellate, Euglena gracilis. To gain an insight into the evolution of this unique protein, similar sequences were searched for in several euglenoids by reverse transcriptase-polymerase chain reation (RT-PCR) using degenerate primers. Two similar transcripts were detected in each of the four phototrophic euglenoids, Euglena stellata, Colacium sideropus, Eutreptia viridis, Eutreptiella gymnastica, and in an osmotrophic (i.e., obtaining nutrients by absorption) one, Khawkinea quartana, but not in a phagotrophic euglenoid, Petalomonas cantuscygni. Each of them seemed to be orthologous to PACα and PACβ, respectively, and had the same domain structure as PAC subunits each of which is composed of two flavin binding domains, F1 and F2, each followed by an adenylyl cyclase catalytic domain, C1 and C2, respectively. This fact implies that they constitute a functional photoactivated adenylyl cyclase like PAC. Phylogenetic analysis of the adenylyl cyclase catalytic domains revealed that they belong to a bacterial cluster, not to a trypanosomal one. In addition, two trypanosome-type adenylyl cyclases were discovered in E. gracilis. In contrast to PAC, deduced amino acid sequences of the trypanosome-type adenylyl cyclases indicated that they are integral membrane proteins with a membrane spanning region at the midpoint of them, followed by an adenylyl cyclase catalytic domain which seems cytoplasmic. Overall, we propose that PAC might have been transferred to euglenoids on the occasion of secondary endosymbiosis.
Формат application.pdf
Издатель Royal Society of Chemistry
Название The origin of photoactivated adenylyl cyclase (PAC), the Euglena blue-light receptor: phylogenetic analysis of orthologues of PAC subunits from several euglenoids and trypanosome-type adenylyl cyclases from Euglena gracilisElectronic supplementary information (ESI) available: Multiple alignment of deduced amino acid sequences. See http://www.rsc.org/suppdata/pp/b3/b316075k/
Тип research-article
DOI 10.1039/b316075k
Electronic ISSN 1474-9092
Print ISSN 1474-905X
Журнал Photochemical & Photobiological Sciences
Том 3
Первая страница 580
Последняя страница 586
Аффилиация Koumura Yoshiko; PRESTO, Japan Science and Technology Agency; National Institute for Basic Biology
Аффилиация Suzuki Takeshi; PRESTO, Japan Science and Technology Agency; National Institute for Basic Biology
Аффилиация Yoshikawa Shinya; PRESTO, Japan Science and Technology Agency; National Institute for Basic Biology
Аффилиация Watanabe Masakatsu; National Institute for Basic Biology; Department of Photoscience, School of Advanced Sciences, Graduate University for Advanced Studies
Аффилиация Iseki Mineo; PRESTO, Japan Science and Technology Agency; National Institute for Basic Biology
Выпуск 6
Библиографическая ссылка M. Ahmad, A. R. Cashmore, HY4, A. thaliana, Nature, 1993, 366, 162, 166
Библиографическая ссылка C. Lin, D. Shalitin, Cryptochrome structure and signal transduction, Annu. Rev. Plant Biol., 2003, 54, 469, 496
Библиографическая ссылка E. Huala, P. W. Oeller, E. Liscum, I. S. Han, E. Larsen, W. R. Briggs, Arabidopsis, Science, 1997, 278, 2120, 2123
Библиографическая ссылка W. R. Briggs, J. M. Christie, Phototropins 1 and 2: versatile plant blue-light receptors, Trends Plant Sci., 2002, 7, 204, 210
Библиографическая ссылка M. Iseki, S. Matsunaga, A. Murakami, K. Ohno, K. Shiga, K. Yoshida, M. Sugai, T. Takahashi, T. Hori, M. Watanabe, Euglena gracilis, Nature, 2002, 415, 1047, 1051
Библиографическая ссылка M. Gomelsky, S. Kaplan, appA, trans, Rhodobacter sphaeroides, J. Bacteriol., 1995, 177, 4609, 4618
Библиографическая ссылка M. Gomelsky, S. Kaplan, Rhodobacter sphaeroides, J. Biol. Chem., 1998, 273, 35319, 35325
Библиографическая ссылка S. Masuda, C. E. Bauer, Rhodobacter sphaeroides, Cell, 2002, 110, 613, 623
Библиографическая ссылка M. Gomelsky, G. Klug, BLUF: a novel FAD-binding domain involved in sensory transduction in microorganisms, Trends Biochem. Sci., 2002, 27, 497, 500
Библиографическая ссылка A. Danchin, Phylogeny of adenylyl cyclases, Adv. Second Message Phosphoprotein Res., 1993, 27, 109, 162
Библиографическая ссылка J. U. Linder, J. E. Schultz, The class III adenylyl cyclases: multi-purpose signaling modules, Cell. Signal., 2003, 15, 1081, 1089
Библиографическая ссылка S. Matsunaga, T. Hori, T. Takahashi, M. Kubota, M. Watanabe, K. Okamoto, K. Masuda, M. Sugai, Euglena gracilis, Protoplasma, 1998, 201, 45, 52
Библиографическая ссылка M. Ntefidou, M. Iseki, M. Watanabe, M. Lebert, D.-P. Häder, Euglena gracilis, Plant Physiol., 2003, 133, 1517, 1521
Библиографическая ссылка J. D. Thompson, T. J. Gibson, F. Plewniak, F. Jeanmougin, D. G. Higgins, The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools, Nucleic Acids Res., 1997, 25, 4876, 4882
Библиографическая ссылка N. Saitou, M. Nei, The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol. Biol. Evol., 1987, 4, 406, 425
Библиографическая ссылка R. D. M. Page, TreeView: an application to display phylogenetic trees on personal computers, Comput. Appl. Biosci., 1996, 12, 357, 358
Библиографическая ссылка J. Kyte, R. F. Doolittle, A simple method for displaying the hydropathic character of a protein, J. Mol. Biol., 1982, 157, 105, 132
Библиографическая ссылка K. Nakai, M. Kanehisa, A knowledge base for predicting protein localization sites in eukaryotic cells, Genomics, 1992, 14, 897, 911
Библиографическая ссылка E. W. Linton, M. A. Nudelman, V. Conforti, R. E. Triemer, A molecular analysis of the euglenophytes using SSU rDNA, J. Phycol., 2000, 36, 740, 746
Библиографическая ссылка A. N. Müllner, D. G. Angeler, R. Samuel, E. W. Linton, R. E. Triemer, Phylogenetic analysis of phagotrophic, phototrophic and osmotrophic euglenoids by using the nuclear 18S rDNA sequence, Int. J. Syst. Evol. Microbiol., 2001, 51, 783, 791
Библиографическая ссылка B. Marin, A. Palm, M. Klingberg, M. Melkonian, Phylogeny and taxonomic revision of plastid-containing euglenophytes based on SSU rDNA sequence comparisons and synapomorphic signatures in the SSU rRNA secondary structure, Protist, 2003, 154, 99, 145
Библиографическая ссылка P. A. Kivic, P. L. Walne, An evaluation of a possible phylogenetic relationship between the Euglenophyta and Kinetoplastida, Origins Life Evol. Biosphere, 1984, 13, 269, 288
Библиографическая ссылка N. S. Dawson, P. L. Walne, Evolutionary trends in euglenoids, Arch. Protistenkd., 1994, 144, 221, 225
Библиографическая ссылка B. S. Leander, R. E. Triemer, M. A. Farmer, Character evolution in heterotrophic euglenoids, Europ. J. Protistol., 2001, 37, 337, 356
Библиографическая ссылка S. P. Gibbs, The chloroplasts of some algal groups may have evolved from endosymbiotic eukaryotic algae, Ann. N. Y. Acad. Sci., 1981, 361, 193, 208
Библиографическая ссылка K. Okajima, S. Yoshihara, X. Geng, M. Katayama, M. Ikeuchi, Structural and functional analysis of a novel flavoprotein in cyanobacteria, Plant Cell Physiol., 2003, 44, s162
Библиографическая ссылка B. J. Kraft, S. Masuda, J. Kikuchi, V. Dragnea, G. Tollin, J. M. Zaleski, C. E. Bauer, Spectroscopic and mutational analysis of the blue-light photoreceptor AppA: a novel photocycle involving flavin stacking with an aromatic amino acid, Biochemistry, 2003, 42, 6726, 6734
Библиографическая ссылка W. Laan, M. A. van der Horst, I. H. van Stokkum, K. J. Hellingweerf, Rhodobacter sphaeroides, Photochem. Photobiol., 2003, 78, 290, 297
Библиографическая ссылка J. J. G. Tesmer, R. K. Sunahara, A. G. Gilman, S. R. Sprang, Crystal structure of the catalytic domains of adenylyl cyclase in a complex with GsαGTPγS, Science, 1997, 278, 1907, 1916
Библиографическая ссылка J. H. Hurley, Structure, mechanism, and regulation of mammalian adenylyl cyclase, J. Biol. Chem., 1999, 274, 7599, 7602
Библиографическая ссылка S.-Z. Yan, Z.-H. Huang, R. S. Shaw, W.-J. Tang, The conserved asparagine and arginine are essential for catalysis of mammalian adenylyl cyclase, J. Biol. Chem., 1997, 272, 12342, 12349
Библиографическая ссылка G. von Heijne, A new method for predicting signal sequence cleavage sites, Nucleic Acids Res., 1986, 14, 4683, 4690
Библиографическая ссылка S. Alexandre, P. Paindavoine, P. Tebabi, A. Pays, S. Halleux, M. Steinert, E. Pays, Trypanosoma brucei, Mol. Biochem. Parasitol., 1990, 43, 279, 88
Библиографическая ссылка M. A. Sanchez, D. Zeoli, E. M. Klamo, M. P. Kavanaugh, S. M. Landfear, Leishmania donovani, J. Biol. Chem., 1995, 270, 17551, 17558
Библиографическая ссылка I. A. Carré, D. L. Laval-Martin, L. N. Edmunds, Jr., Euglena gracilis, J. Cell Sci., 1989, 94, 267, 272
Библиографическая ссылка L. N. Edmunds, Jr., Clocks, cell cycles, cancer, and aging. Role of the adenylate cyclase-cyclic AMP-phosphodiesterase axis in signal transduction between circadian oscillator and cell division cycle, Ann. N. Y. Acad. Sci., 1994, 719, 77, 96
Библиографическая ссылка H. Tahedl, P. Richter, M. Lebert, D.-P. Häder, Euglena gracilis, Microgravity Sci. Technol., 1998, 11, 173, 178
Библиографическая ссылка J. Tong, I. A. Carré, L. N. Edmunds, Jr., Euglena gracilis, J. Cell Sci., 1991, 100, 365, 369
Библиографическая ссылка R. Jasso-Chávez, A. Vega-Segura, M. El-Hafidi, R. Moreno-Sánchez, E. Torres-Márquez, Euglena gracilis, Arch. Biochem. Biophys., 2002, 404, 48, 54
Библиографическая ссылка G. Mohabir, L. N. Edmunds, Jr., Euglena, Cell Signal., 1999, 11, 143, 147

Скрыть метаданые