Experimental techniques for gyroscope performance enhancement for the Gravity Probe B relativity mission
Saps Buchman; Francis Everitt; Brad Parkinson; John Turneaure; Mac Keiser; Mike Taber; Doron Bardas; Jim Lockhart; Barry Muhlfelder; John Mester; Yueming Xiao; Gregory Gutt; Dale Gill; Robert Brumley; Brian DiDonna; Saps Buchman; W W Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA; Francis Everitt; W W Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA; Brad Parkinson; W W Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA; John Turneaure; W W Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA; Mac Keiser; W W Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA; Mike Taber; W W Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA; Doron Bardas; W W Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA; Jim Lockhart; W W Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA; Barry Muhlfelder; W W Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA; John Mester; W W Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA; Yueming Xiao; W W Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA; Gregory Gutt; W W Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA; Dale Gill; W W Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA; Robert Brumley; W W Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA; Brian DiDonna; W W Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA
Журнал:
Classical and Quantum Gravity
Дата:
1996-11-01
Аннотация:
The Gravity Probe B relativity mission experiment is designed to measure the frame dragging and geodetic relativistic precessions in a 650 km polar orbit. We describe some of the advanced experimental techniques used to achieve the required gyroscope accuracy of between 0.05 and . The subjects discussed are: (i) the development of high-precision gyroscopes with drift rates of less than , (ii) a low-temperature bake-out procedure resulting in a helium pressure of less than at 2.5 K, (iii) a read-out system using DC SQUID magnetometers with a noise figure of at 5 mHz and (iv) AC and DC magnetic shielding techniques which produce an AC attenuation factor in excess of and a residual DC field of less than .
104.1Кб