Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Guy Bonneau
Дата выпуска 1997-08-01
dc.description We analyse, in a systematic way, four-dimensional Einstein - Weyl spaces equipped with a diagonal Kähler Bianchi IX metric. In particular, we show that the subclass of Einstein - Weyl structures with a constant conformal scalar curvature is the one with a conformally scalar flat - but not necessarily scalar flat - metric; we exhibit its three-parameter distance and Weyl 1-form. This extends the previous analysis of Pedersen, Swann and Madsen, limited to the scalar flat, antiself-dual case. We also check, in agreement with a theorem of Derdzinski, that the most general conformally Einstein metric in the family of biaxial Kähler Bianchi IX metrics is an extremal metric of Calabi, conformal to Carter's metric, thanks to Chave and Valent's results.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Einstein - Weyl structures corresponding to diagonal Kähler Bianchi IX metrics
Тип paper
DOI 10.1088/0264-9381/14/8/012
Electronic ISSN 1361-6382
Print ISSN 0264-9381
Журнал Classical and Quantum Gravity
Том 14
Первая страница 2123
Последняя страница 2135
Аффилиация Guy Bonneau; Laboratoire de Physique Théorique et des Hautes Energies, Unité associée au CNRS URA 280, Université Paris 7, 2 Place Jussieu, 75251 Paris Cedex 05, France
Выпуск 8

Скрыть метаданые