Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Peter Hübner
Дата выпуска 1999-09-01
dc.description This is the second paper in a series describing a numerical implementation of the conformal Einstein equation. This paper deals with the technical details of the numerical code used to perform numerical time evolutions from a `minimal' set of data. We outline the numerical construction of a complete set of data for our equations from a minimal set of data. The second- and the fourth-order discretizations, which are used for the construction of the complete data set and for the numerical integration of the time evolution equations, are described and their efficiencies are compared. By using the fourth-order scheme we reduce our computer resource requirements - with respect to memory as well as computation time - by at least two orders of magnitude as compared to the second-order scheme.
Формат application.pdf
Издатель Institute of Physics Publishing
Название A scheme to numerically evolve data for the conformal Einstein equation
Тип paper
DOI 10.1088/0264-9381/16/9/302
Electronic ISSN 1361-6382
Print ISSN 0264-9381
Журнал Classical and Quantum Gravity
Том 16
Первая страница 2823
Последняя страница 2843
Аффилиация Peter Hübner; Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg, D-14476 Golm, Germany
Выпуск 9

Скрыть метаданые