Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор M A H MacCallum
Автор J E Aman
Дата выпуска 1986-11-01
dc.description Explicit sets of spinor nth derivatives of the Riemann curvature spinor for a general spacetime are specified for each n so that they contain the minimal number of components enabling all derivatives of order m to be expressed algebraically in terms of these sets for n<or=m; this generalises an earlier results by Penrose. The minimal sets are defined recursively in a manner convenient for use in the procedures for resolving the 'equivalence problem' of the local isometry of two given spacetimes. The actual numbers of quantities to be calculated are given and the reductions in these arising in special cases such as vacuum and conformally flat spacetimes, and spacetimes with vanishing Bach tensor, are discussed, as is the embodiment of the results in the CLASSI implementation (using the computer algebra system SHEEP) of the procedure for the equivalence problem. Finally, the authors comment on the possible relevance of the results to analytic and numerical methods of solving the Einstein equations.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Algebraically independent nth derivatives of the Riemannian curvature spinor in a general spacetime
Тип paper
DOI 10.1088/0264-9381/3/6/013
Electronic ISSN 1361-6382
Print ISSN 0264-9381
Журнал Classical and Quantum Gravity
Том 3
Первая страница 1133
Последняя страница 1141
Аффилиация M A H MacCallum; Sch. of Math. Sci., Queen Mary Coll., London, UK
Аффилиация J E Aman; Sch. of Math. Sci., Queen Mary Coll., London, UK
Выпуск 6

Скрыть метаданые