| Автор | F Delduc |
| Автор | F Gieres |
| Дата выпуска | 1990-11-01 |
| dc.description | Conformally invariant couplings of two-dimensional field theories to gravity can be formulated either in a Riemannian surface or manifold (metric) framework. After a detailed presentation of the Riemannian surface approach (and comparison with the metric formalism), the authors develop its supersymmetric generalization. Super Beltrami differentials are introduced without any reference to metric (vielbein) structures and superconformal models are studied in this framework. The main goal of the work consists in the construction of local (and supersymmetric) field theories defined on arbitrary (super-)Riemann surfaces and exhibiting the (super-)holomorphic factorization in a manifest way. |
| Формат | application.pdf |
| Издатель | Institute of Physics Publishing |
| Название | Beltrami differentials, conformal models and their supersymmetric generalizations |
| Тип | paper |
| DOI | 10.1088/0264-9381/7/11/007 |
| Electronic ISSN | 1361-6382 |
| Print ISSN | 0264-9381 |
| Журнал | Classical and Quantum Gravity |
| Том | 7 |
| Первая страница | 1907 |
| Последняя страница | 1952 |
| Аффилиация | F Delduc; LPTHE, Paris VII Univ., France |
| Аффилиация | F Gieres; LPTHE, Paris VII Univ., France |
| Выпуск | 11 |