Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор W K Schief
Дата выпуска 1994-10-01
dc.description A systematic way of obtaining integrable reductions of a classical system investigated by Darboux (1887-96) in connection with conjugate coordinate systems is presented. It includes, in particular, the Lame system, its generalization to pseudo-Riemannian spaces of constant curvature, an integrable 2+1-dimensional sine-Gordon equation and a hyperbolic equation of Klein-Gordon type. The integrability of a classical generalized Weingarten system set down by Bianchi (1957) is proven by means of a suitable superposition of two constraints. It is shown that these reductions are preserved under a Darboux-Levi-type transformation. A connection to the Moutard transformation is recorded.
Формат application.pdf
Издатель Institute of Physics Publishing
Название On a 2+1-dimensional Darboux system: integrable reductions
Тип paper
DOI 10.1088/0266-5611/10/5/014
Electronic ISSN 1361-6420
Print ISSN 0266-5611
Журнал Inverse Problems
Том 10
Первая страница 1185
Последняя страница 1198
Аффилиация W K Schief; Sch. of Math., New South Wales Univ., Sydney, NSW, Australia
Выпуск 5

Скрыть метаданые