Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Matti Lassas
Дата выпуска 1997-12-01
dc.description Physically, the conductivity equation is obtained as a low-frequency limit of time-harmonic Maxwell's equations. In this work we consider the relation of corresponding inverse boundary value problems. The behaviour of the impedance mapping for time-harmonic Maxwell's equations is analysed when the frequency goes to zero where Maxwell's equations have an eigenvalue of infinite multiplicity. We show that an appropriate restriction of the impedance mapping for Maxwell's equations has a low-frequency limit. Also, we give a formula from which the impedance imaging data (the Dirichlet-to-Neumann mapping for the conductivity equation) can be calculated by using the low-frequency limit of the impedance mapping.
Формат application.pdf
Издатель Institute of Physics Publishing
Название The impedance imaging problem as a low-frequency limit
Тип paper
DOI 10.1088/0266-5611/13/6/007
Electronic ISSN 1361-6420
Print ISSN 0266-5611
Журнал Inverse Problems
Том 13
Первая страница 1503
Последняя страница 1518
Аффилиация Matti Lassas; Rolf Nevanlinna Institute, University of Helsinki, Helsinki, PL4, FIN-00014, Finland
Выпуск 6

Скрыть метаданые