Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Pedro Morin
Автор Rubén D Spies
Дата выпуска 1998-12-01
dc.description The nonlinear partial differential equations considered here arise from the conservation laws of linear momentum and energy, and describe structural phase transitions (martensitic transformations) in one-dimensional shape memory alloys (SMA) with non-convex Landau-Ginzburg free energy potentials. This system is formally written as a nonlinear abstract Cauchy problem in an appropriate Hilbert space. A quasilinearization-based algorithm for parameter identification in this type of Cauchy problem is proposed. Sufficient conditions for the convergence of the algorithm are derived in terms of the regularity of the solutions with respect to the parameters. Numerical examples are presented in which the algorithm is applied to recover the non-physical parameters describing the free energy potential in SMA, from both exact and noisy data.
Формат application.pdf
Издатель Institute of Physics Publishing
Название A quasilinearization approach for parameter identification in a nonlinear model of shape memory alloys
Тип paper
DOI 10.1088/0266-5611/14/6/013
Electronic ISSN 1361-6420
Print ISSN 0266-5611
Журнал Inverse Problems
Том 14
Первая страница 1551
Последняя страница 1563
Аффилиация Pedro Morin; Instituto de Desarrollo Tecnológico Para la Industria Química (INTEC), Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Güemes 3450, 3000 Santa Fe, Argentina
Аффилиация Rubén D Spies; Instituto de Desarrollo Tecnológico Para la Industria Química (INTEC), Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Güemes 3450, 3000 Santa Fe, Argentina
Выпуск 6

Скрыть метаданые