Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор George Bozis
Автор Grigoris Pavliotis
Дата выпуска 1999-02-01
dc.description For a given holonomic system of two degrees of freedom and for a given monoparametric family of trajectories (not necessarily isoenergetic), generated by the known potential of the system, we find a formula offering the Riemannian curvature associated with the Maupertuis metric. In the light of the inverse problem of dynamics, we introduce also the notion of the family zero-curvature curves (FZCC). As an application, we derive the pertinent formulae for all members of a family of concentric circular orbits produced by the appropriate potentials, we examine the connection of their stability to the sign of the curvature and we compare with stability deduced by other considerations, including numerical integration.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Riemannian curvature and stability of monoparametric families of trajectories
Тип paper
DOI 10.1088/0266-5611/15/1/017
Electronic ISSN 1361-6420
Print ISSN 0266-5611
Журнал Inverse Problems
Том 15
Первая страница 141
Последняя страница 153
Аффилиация George Bozis; Department of Theoretical Mechanics, University of Thessaloniki, GR-54006, Greece
Аффилиация Grigoris Pavliotis; Department of Theoretical Mechanics, University of Thessaloniki, GR-54006, Greece
Выпуск 1

Скрыть метаданые