Автор | P. A. Kalugin |
Автор | A. V. Sokol |
Автор | E. B. Tatarinova |
Дата выпуска | 1990-11-01 |
dc.description | Motion of a passive component in a periodic incompressible steady flow is studied in the presence of intrinsic diffusivity of a medium. It is rigorously proven that for large distance and time the transport can be described as an effective anisotropic diffusion. Analytical properties of the effective diffusivity D<sub>n</sub>* for a given direction n as a function of complex P<sup>2</sup> (P is the Peclet number) are discussed. It is shown that the function D<sub>n</sub>*(P<sup>2</sup>) is meromorphic and both poles and zeroes of D<sub>n</sub>*(P<sup>2</sup>) are real and negative. It is proven that D<sub>n</sub>* < D(1 + const P<sup>2</sup>) for any real P. New algorithm based on the continued fractions is given to compute D<sub>n</sub>*(P<sup>2</sup>). |
Формат | application.pdf |
Издатель | Institute of Physics Publishing |
Название | Analytical Properties of the Effective-Diffusion Coefficient in Periodic Flows |
Тип | lett |
DOI | 10.1209/0295-5075/13/5/007 |
Electronic ISSN | 1286-4854 |
Print ISSN | 0295-5075 |
Журнал | EPL (Europhysics Letters) |
Том | 13 |
Первая страница | 417 |
Последняя страница | 421 |
Выпуск | 5 |