Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор T. L. H. Watkin
Дата выпуска 1993-03-10
dc.description We introduce optimal learning with a neural network, which we define as minimising the expectation generalisation error. We find that the optimally-trained spherical perceptron may learn a linearly-separable rule as well as any possible network. We sketch an algorithm to generate optimal learning, and simulation results support our conclusions. Optimal learning of a well-known, significant unlearnable problem, the “mismatched weight” problem, gives better asymptotic learning than conventional techniques, and may be simulated enormously more easily. Unlike many other learning schemes, optimal learning extends to more general networks learning more complex rules.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Optimal Learning with a Neural Network
Тип lett
DOI 10.1209/0295-5075/21/8/013
Electronic ISSN 1286-4854
Print ISSN 0295-5075
Журнал EPL (Europhysics Letters)
Том 21
Первая страница 871
Последняя страница 876
Аффилиация T. L. H. Watkin; Theoretical Physics, Oxford University - 1 Keble Road, Oxford OX1 3NP, UK
Выпуск 8

Скрыть метаданые