| Автор | T. A. Witten |
| Автор | Hao Li |
| Дата выпуска | 1993-07-01 |
| dc.description | We infer scaling of the shape and energy of a space-enclosing elastic sheet such as a large fullerene ball of linear dimension R. Stretching deformation is crucial in determining the optimal shape, in conjunction with bending. The asymptotic shape of a symmetrical fullerene ball is a flat-sided polyhedron whose edges have an average curvature radius of order R<sup>2/3</sup>. The predicted asymptotic energy is concentrated in these edges and is of order R<sup>1/3</sup>. Analogous edges with this scaling property should occur generally in elastic sheets with discrete disclinations. |
| Формат | application.pdf |
| Издатель | Institute of Physics Publishing |
| Название | Asymptotic Shape of a Fullerene Ball |
| Тип | lett |
| DOI | 10.1209/0295-5075/23/1/009 |
| Electronic ISSN | 1286-4854 |
| Print ISSN | 0295-5075 |
| Журнал | EPL (Europhysics Letters) |
| Том | 23 |
| Первая страница | 51 |
| Последняя страница | 55 |
| Аффилиация | T. A. Witten; James Franck Institute, University of Chicago - Chicago, IL 60637, USA |
| Аффилиация | Hao Li; James Franck Institute, University of Chicago - Chicago, IL 60637, USA |
| Выпуск | 1 |