Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор I. Bratberg
Автор A. Hansen
Автор E. H. Hauge
Дата выпуска 1997-01-01
dc.description We point out that the extended Chalker-Coddington model in the “classical” limit, i.e. the limit of large disorder, shows crossover to the so-called “smart kinetic walks”. The reason why this limit has previously been identified with ordinary percolation is, presumably, that the localization length exponents ν coincide for the two problems. Other exponents, like the fractal dimension D, differ. This gives an opportunity to test the consistency of the semiclassical picture of the localization-delocalization transitions in the integer quantum Hall effect. We calculate numerically, using the extended Chalker-Coddington model, two exponents τ and D that characterize critical properties of the geometry of the wave function at these transitions. We find that the exponents, within our precision, are equal to those of two-dimensional percolation, as predicted by the semiclassical picture.
Формат application.pdf
Издатель Institute of Physics Publishing
Копирайт 1997 EDP Sciences
Название Geometrical exponents in the integer quantum Hall effect
Тип lett
DOI 10.1209/epl/i1997-00111-0
Electronic ISSN 1286-4854
Print ISSN 0295-5075
Журнал EPL (Europhysics Letters)
Том 37
Первая страница 19
Последняя страница 24
Аффилиация I. Bratberg; Institutt for Fysikk, Norges Teknisk-naturvitenskapelige Universitet, N-7034 Trondheim, Norway
Аффилиация A. Hansen; Institutt for Fysikk, Norges Teknisk-naturvitenskapelige Universitet, N-7034 Trondheim, Norway
Аффилиация E. H. Hauge; Institutt for Fysikk, Norges Teknisk-naturvitenskapelige Universitet, N-7034 Trondheim, Norway
Выпуск 1

Скрыть метаданые