Автор |
I. Bratberg |
Автор |
A. Hansen |
Автор |
E. H. Hauge |
Дата выпуска |
1997-01-01 |
dc.description |
We point out that the extended Chalker-Coddington model in the “classical” limit, i.e. the limit of large disorder, shows crossover to the so-called “smart kinetic walks”. The reason why this limit has previously been identified with ordinary percolation is, presumably, that the localization length exponents ν coincide for the two problems. Other exponents, like the fractal dimension D, differ. This gives an opportunity to test the consistency of the semiclassical picture of the localization-delocalization transitions in the integer quantum Hall effect. We calculate numerically, using the extended Chalker-Coddington model, two exponents τ and D that characterize critical properties of the geometry of the wave function at these transitions. We find that the exponents, within our precision, are equal to those of two-dimensional percolation, as predicted by the semiclassical picture. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Копирайт |
1997 EDP Sciences |
Название |
Geometrical exponents in the integer quantum Hall effect |
Тип |
lett |
DOI |
10.1209/epl/i1997-00111-0 |
Electronic ISSN |
1286-4854 |
Print ISSN |
0295-5075 |
Журнал |
EPL (Europhysics Letters) |
Том |
37 |
Первая страница |
19 |
Последняя страница |
24 |
Аффилиация |
I. Bratberg; Institutt for Fysikk, Norges Teknisk-naturvitenskapelige Universitet, N-7034 Trondheim, Norway |
Аффилиация |
A. Hansen; Institutt for Fysikk, Norges Teknisk-naturvitenskapelige Universitet, N-7034 Trondheim, Norway |
Аффилиация |
E. H. Hauge; Institutt for Fysikk, Norges Teknisk-naturvitenskapelige Universitet, N-7034 Trondheim, Norway |
Выпуск |
1 |