Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор P. J. Martínez
Автор L. M. Floría
Автор F. Falo
Автор J. J. Mazo
Дата выпуска 1999-02-15
dc.description The phenomenon of intrinsic localization in discrete nonlinear extended systems, i.e. the (generic) existence of discrete breathers, is shown to be not restricted to periodic solutions but to also extend to more complex (chaotic) dynamical behaviour. We illustrate this with two different forced and damped systems exhibiting this type of solutions: In an anisotropic Josephson junction ladder, we obtain intrinsically localized chaotic solutions by following periodic rotobreather solutions through a cascade of period-doubling bifurcations. In an array of forced and damped van der Pol oscillators, they are obtained by numerical continuation (path-following) methods from the uncoupled limit, where its existence is trivially ascertained, following the ideas of the anticontinuum limit.
Формат application.pdf
Издатель Institute of Physics Publishing
Копирайт 1999 EDP Sciences
Название Intrinsically localized chaos in discrete nonlinear extended systems
Тип lett
DOI 10.1209/epl/i1999-00186-5
Electronic ISSN 1286-4854
Print ISSN 0295-5075
Журнал EPL (Europhysics Letters)
Том 45
Первая страница 444
Последняя страница 449
Выпуск 4

Скрыть метаданые