Автор |
P J Reynolds |
Автор |
H E Stanley |
Автор |
W Klein |
Дата выпуска |
1977-11-01 |
dc.description |
The percolation problem is solved exactly in one dimension. The functions obtained bear a strong resemblance to those of the n-vector model on the same lattice. Further, a ghost field is included exactly in all dimensions d, thereby treating the 'thermodynamics' of percolation without appealing to the Potts model. In particular, it is shown that for d=1 that the nature of the singularities near the critical percolation probability, p<sub>c</sub>=1, is described by alpha <sub>p</sub>= gamma <sub>p</sub>=1, beta <sub>p</sub>=0, and delta <sub>p</sub>= infinity . The pair connectedness and correlation length are calculated explicitly, and eta <sub>p</sub>= nu <sub>p</sub>=1, in agreement with the hyperscaling relation d nu <sub>p</sub>=2- alpha <sub>p</sub>. Finally, scaling is demonstrated for both the cluster size distribution and the percolation function analogous to the Gibbs free energy, and the scaling powers are explicitly evaluated; in particular, the exponents sigma =1 and tau =2, are found. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
Ghost fields, pair connectedness, and scaling: exact results in one-dimensional percolation |
Тип |
lett |
DOI |
10.1088/0305-4470/10/11/007 |
Print ISSN |
0305-4470 |
Журнал |
Journal of Physics A: Mathematical and General |
Том |
10 |
Первая страница |
L203 |
Последняя страница |
L209 |
Аффилиация |
P J Reynolds; Dept. of Phys., Boston Univ., Boston, MA, USA |
Аффилиация |
H E Stanley; Dept. of Phys., Boston Univ., Boston, MA, USA |
Аффилиация |
W Klein; Dept. of Phys., Boston Univ., Boston, MA, USA |
Выпуск |
11 |