Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор G E Powell
Автор I C Percival
Дата выпуска 1979-11-01
dc.description Regular and irregular motions of bounded conservative Hamiltonian systems of N degrees of freedom can be distinguished by the structure of the frequency spectrum of a single trajectory. The spectral entropy S is introduced which provides a measure of the distribution of the frequency components. Numerical calculations on the model Henon and Heiles system and a realistic molecular model are performed. Power spectra are obtained from numerical solutions to Hamilton's equations using fast Fourier transforms and the Hanning method. For regular trajectories S is found to stabilise after a finite time of integration, while for irregular cases S increases erratically. Estimates of the relative volume of regular regions of phase space as a function of energy are given for the two systems.
Формат application.pdf
Издатель Institute of Physics Publishing
Название A spectral entropy method for distinguishing regular and irregular motion of Hamiltonian systems
Тип paper
DOI 10.1088/0305-4470/12/11/017
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 12
Первая страница 2053
Последняя страница 2071
Аффилиация G E Powell; Dept. of Appl. Math., Queen Mary Coll., Univ. of London, London, UK
Аффилиация I C Percival; Dept. of Appl. Math., Queen Mary Coll., Univ. of London, London, UK
Выпуск 11

Скрыть метаданые