Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор T Z Kalamboukis
Дата выпуска 1980-01-01
dc.description A comparison is made between Davidson's method for the real, symmetric matrix eigenproblem and a version of the Lanczos method obtained by removing the perturbation theory 'corrections' from Davidson's algorithm. It is found that the convergence of Davidson's method is superior to that of Lanczos only if the matrix is quite strongly diagonally dominant. Applications to typical matrices from nuclear structure calculations, which are not very diagonally dominant, show no essential difference between the convergence rates. The Davidson-Lanczos method as used here is capable, unlike the usual versions of the Lanczos method, of direct application to the generalised eigenproblem Ax= lambda Bx. The author shows how this can be implemented and gives some examples that illustrate the convergence properties.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Davidson's algorithm with and without perturbation corrections
Тип paper
DOI 10.1088/0305-4470/13/1/008
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 13
Первая страница 57
Последняя страница 62
Аффилиация T Z Kalamboukis; Dept. of Computing Sci., Univ. of Glasgow, Glasgow, UK
Выпуск 1

Скрыть метаданые