Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор H Nakanishi
Автор H E Stanley
Дата выпуска 1981-03-01
dc.description Cluster statistics obtained by the Monte Carlo method for percolation processes in systems of dimensionality two to seven are analysed for the percolation analogue of the thermodynamic equation of state. In particular, the authors calculate the scaling functions for the analogues of the thermodynamic potentials and their derivatives, and investigate their dependence on dimension d. They are guided by the two exactly soluble limits of d=1 and the Bethe lattice (d= infinity ). The scaling region, where a good degree of data collapsing can be observed, is investigated in terms of the two 'thermodynamic' variables, one of which is analogous to the temperature and the other to the magnetic field. The characteristic forms of the scaling functions are closely related to the 'thermodynamic' stability conditions.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Scaling studies of percolation phenomena in systems of dimensionality two to seven. II. Equation of state
Тип paper
DOI 10.1088/0305-4470/14/3/017
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 14
Первая страница 693
Последняя страница 720
Аффилиация H Nakanishi; Dept. of Phys., Boston Univ., Boston, MA, USA
Аффилиация H E Stanley; Dept. of Phys., Boston Univ., Boston, MA, USA
Выпуск 3

Скрыть метаданые