Автор |
F E A dos Santos |
Автор |
J Jayaraman |
Дата выпуска |
1981-03-01 |
dc.description |
Using for spin-<sup>3</sup>/<sub>2</sub> matrices a direct-product structure involving the usual Pauli spin matrices, the authors derive the Dirac-Clifford matrices in terms of certain algebraic combinations of spin-<sup>3</sup>/<sub>2</sub> matrices in a representation-independent way, thus achieving an extension of the Pauli spin matrices from the usual spin-<sup>1</sup>/<sub>2</sub> space to the spin-<sup>3</sup>/<sub>2</sub> space. Basing the derivation directly on this analysis, two algebras satisfied by spin-<sup>3</sup>/<sub>2</sub> matrices are derived. One of these, which is also satisfied by spin-<sup>1</sup>/<sub>2</sub> matrices, is directly related to the spin-<sup>3</sup>/<sub>2</sub> algebras of Weaver (1978) and of Bhabha and Madhava Rao (for three objects). The other algebra is new and curiously is not satisfied by spin-<sup>1</sup>/<sub>2</sub> matrices. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
Some remarkable spin-1/2-like algebraic properties of spin-3/2 matrices |
Тип |
paper |
DOI |
10.1088/0305-4470/14/3/021 |
Print ISSN |
0305-4470 |
Журнал |
Journal of Physics A: Mathematical and General |
Том |
14 |
Первая страница |
745 |
Последняя страница |
751 |
Аффилиация |
F E A dos Santos; Dept. de Fisica, Univ. Federal de Paraiba, Paraiba, Brazil |
Аффилиация |
J Jayaraman; Dept. de Fisica, Univ. Federal de Paraiba, Paraiba, Brazil |
Выпуск |
3 |