On a class of non-completely integrable equations with power-like nonlinearities and factorised associated linear operators
H Cornille; H Cornille; DPh-T, CENS, Gif-sur-Yvette, France
Журнал:
Journal of Physics A: Mathematical and General
Дата:
1982-10-01
Аннотация:
The author explicitly builds exponential-type bi-solitons of L<sub>q</sub>K= Sigma <sub>i+j=1</sub><sup>i+j=q</sup>a<sub>ij</sub> delta <sub>bc</sub><sup>i+j</sup>K=constant*K<sup>N-1</sup>K<sub>x</sub> N integer>or=2, b=x<sup>i</sup> and C=t<sup>j</sup> or equivalently L<sub>q</sub>G=constant (G<sub>x</sub>)<sup>N</sup> for the potentials G<sub>x</sub>=K. The author assumes both that their denominators have no soliton couplings and that L<sub>q</sub> are either factorised linear operators or germs of factorised operators. K<sup>N</sup> and K<sup>N-1</sup>K<sub>x</sub> nonlinearities with associated factorised linear operators belong to a class of non-integrable equations sharing similar properties.
374.9Кб