Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор A O Barut
Автор M A Weiss
Дата выпуска 1983-09-11
dc.description A family of groups P<sup>(m,n)</sup> parametrised by non-negative integers m>n is studied generalising the Poincare group P<sup>(1,1)</sup>. The action of finite-dimensional irreducible real representations of SL(2, C) is used to form semi-direct products. The authors define the complete list of unitary irreducible representations for each P<sup>(m,n)</sup> by finding all sub-groups of SL(2, C) which are little groups; some of the subgroups do not occur in the Poincare group. The geometry of the SL(2, C) action and the classification of SL(2, C) invariant tensors is considered. These groups are appropriate symmetry groups for field theories in higher dimensions and generalise the notion of elementary relativistic quantum systems.
Формат application.pdf
Издатель Institute of Physics Publishing
Название A family of groups generalising the Poincare group and their physical applications
Тип paper
DOI 10.1088/0305-4470/16/13/011
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 16
Первая страница 2905
Последняя страница 2915
Аффилиация A O Barut; Dept. of Phys., Univ. of Colorado, Boulder, CO, USA
Аффилиация M A Weiss; Dept. of Phys., Univ. of Colorado, Boulder, CO, USA
Выпуск 13

Скрыть метаданые