Автор |
V C Aguilera-Navarro |
Автор |
J F Gomes |
Автор |
A H Zimerman |
Автор |
K Ley Koo |
Дата выпуска |
1983-09-11 |
dc.description |
The energy eigenvalues of harmonic oscillators in circular and spherical boxes are obtained through the Rayleigh-Schrodinger perturbative expansion, taking the free particle in a box as the non-perturbed system. The perturbative series is shown to be convergent for small boxes, and an upper bound for the radius of convergence is established. Pade-approximant solutions are also constructed for boxes of any size. Numerical comparison with the exact eigenvalues-which are obtained by constructing and diagonalising the Hamiltonian in the basis of the eigenfunctions of the free particle in a box-corroborates the accuracy and range of validity of the approximate solutions, particularly the convergence and the radius of convergence of the perturbative series. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
On the radius of convergence of Rayleigh-Schrodinger perturbative solutions for quantum oscillators in circular and spherical boxes |
Тип |
paper |
DOI |
10.1088/0305-4470/16/13/015 |
Print ISSN |
0305-4470 |
Журнал |
Journal of Physics A: Mathematical and General |
Том |
16 |
Первая страница |
2943 |
Последняя страница |
2952 |
Аффилиация |
V C Aguilera-Navarro; Inst. de Fisica Teorica, Sao Paulo, Brazil |
Аффилиация |
J F Gomes; Inst. de Fisica Teorica, Sao Paulo, Brazil |
Аффилиация |
A H Zimerman; Inst. de Fisica Teorica, Sao Paulo, Brazil |
Аффилиация |
K Ley Koo; Inst. de Fisica Teorica, Sao Paulo, Brazil |
Выпуск |
13 |