Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Y Gefen
Автор A Aharony
Автор B B Mandelbrot
Дата выпуска 1983-04-21
dc.description Magnetic spin models and resistor networks are studied on certain self-similar fractal lattices, which are described as 'quasi-linear', because they share a significant property of the line: finite portions can be isolated from the rest by removal of two points (sites). In all cases, there is no long-range order at finite temperature. The transition at zero temperature has a discontinuity in the magnetisation, and the associated magnetic exponent is equal to the fractal dimensionality, D. When the lattice reduces to a non-branching curve the thermal exponent v<sup>-1</sup>=y is equal to D. When the lattice is a branching curve, y is related, respectively, to the dimensionality of the single-channel segments of the curve (for the Ising model), or to the exponent describing the resistivity (for models with continuous spin symmetry).
Формат application.pdf
Издатель Institute of Physics Publishing
Название Phase transitions on fractals. I. Quasi-linear lattices
Тип paper
DOI 10.1088/0305-4470/16/6/021
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 16
Первая страница 1267
Последняя страница 1278
Аффилиация Y Gefen; Dept. of Phys. & Astron., Tel-Aviv Univ., Tel-Aviv, Israel
Аффилиация A Aharony; Dept. of Phys. & Astron., Tel-Aviv Univ., Tel-Aviv, Israel
Аффилиация B B Mandelbrot; Dept. of Phys. & Astron., Tel-Aviv Univ., Tel-Aviv, Israel
Выпуск 6

Скрыть метаданые