Автор |
Y Gefen |
Автор |
A Aharony |
Автор |
B B Mandelbrot |
Дата выпуска |
1983-04-21 |
dc.description |
Magnetic spin models and resistor networks are studied on certain self-similar fractal lattices, which are described as 'quasi-linear', because they share a significant property of the line: finite portions can be isolated from the rest by removal of two points (sites). In all cases, there is no long-range order at finite temperature. The transition at zero temperature has a discontinuity in the magnetisation, and the associated magnetic exponent is equal to the fractal dimensionality, D. When the lattice reduces to a non-branching curve the thermal exponent v<sup>-1</sup>=y is equal to D. When the lattice is a branching curve, y is related, respectively, to the dimensionality of the single-channel segments of the curve (for the Ising model), or to the exponent describing the resistivity (for models with continuous spin symmetry). |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
Phase transitions on fractals. I. Quasi-linear lattices |
Тип |
paper |
DOI |
10.1088/0305-4470/16/6/021 |
Print ISSN |
0305-4470 |
Журнал |
Journal of Physics A: Mathematical and General |
Том |
16 |
Первая страница |
1267 |
Последняя страница |
1278 |
Аффилиация |
Y Gefen; Dept. of Phys. & Astron., Tel-Aviv Univ., Tel-Aviv, Israel |
Аффилиация |
A Aharony; Dept. of Phys. & Astron., Tel-Aviv Univ., Tel-Aviv, Israel |
Аффилиация |
B B Mandelbrot; Dept. of Phys. & Astron., Tel-Aviv Univ., Tel-Aviv, Israel |
Выпуск |
6 |