Автор |
M Robnik |
Автор |
M V Berry |
Дата выпуска |
1985-06-21 |
dc.description |
A particle moves in circular arcs with Larmor radius R between specular reflections at the smooth convex boundary of a planar region. The dynamics depends on the value of R in relation to the extreme curvature radii rho <sub>min</sub> and rho <sub>max</sub> and the radius R* of the largest circle that can be inscribed in the boundary. For R<R* some orbits are complete Larmor circles and constitute an integrable component of the motion; all other orbits bounce repeatedly. For rho <sub>min</sub><R< rho <sub>max</sub> there are 'flyaway intervals' on the boundary for which glancing orbits are a powerful source of chaos in the map (on the phase cylinder) relating successive bounces; this type of chaos is a characteristic feature of magnetic billiards. For sufficiently large R the simplest closed orbits consist of two arcs associated with diameters of the boundary; their existence and stability can be determined. In several regimes where motion consists of short skips between nearby boundary points (including the strong-field case R to 0), an explicit adiabatic invariant can be found which gives an excellent approximation to the exact invariant curves in these regimes. Computations for a magnetic billiard with elliptic boundary illustrate the theory. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
Classical billiards in magnetic fields |
Тип |
paper |
DOI |
10.1088/0305-4470/18/9/019 |
Print ISSN |
0305-4470 |
Журнал |
Journal of Physics A: Mathematical and General |
Том |
18 |
Первая страница |
1361 |
Последняя страница |
1378 |
Аффилиация |
M Robnik; H.H. Wills Phys. Lab., Bristol Univ., UK |
Аффилиация |
M V Berry; H.H. Wills Phys. Lab., Bristol Univ., UK |
Выпуск |
9 |