Автор |
A W Niukkanen |
Дата выпуска |
1985-06-21 |
dc.description |
Two series of Clebsch-Gordan type linearisation relations are derived for the most general product of the Laguerre polynomials, L<sub>n1</sub><sup>alpha 1</sup>(u<sub>1</sub>x)L<sub>n2</sub><sup>alpha 2</sup>(u<sub>2</sub>x), which differ in orders, n, weights, alpha , and scaling multipliers, u. The general form and particular cases of coefficients in the expansion of the polynomial x<sup>k</sup>L<sub>n1</sub><sup>alpha 1</sup>(u<sub>1</sub>x) . . . L<sub>nN</sub><sup>alpha N</sup>(u<sub>N</sub>x) in terms of the Laguerre polynomials are established. The applications to hydrogen-like functions and Morse oscillators are indicated. Connection with an earlier Carlitz expansion, the technical links with the hyperspherical harmonics formalism and different approaches to the important Koornwinder's positivity theorems are discussed briefly. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
Clebsch-Gordan-type linearisation relations for the products of Laguerre polynomials and hydrogen-like functions |
Тип |
paper |
DOI |
10.1088/0305-4470/18/9/022 |
Print ISSN |
0305-4470 |
Журнал |
Journal of Physics A: Mathematical and General |
Том |
18 |
Первая страница |
1399 |
Последняя страница |
1417 |
Аффилиация |
A W Niukkanen; Lab. of Molecular Spectrosc. & Quantum Chem., V I Vernadsky Inst. of Geochem. & Anal. Chem., Acad. of Sci., Moscow, USSR |
Выпуск |
9 |