On the relation of kinetic gelation and percolation
N Jan; A Coniglio; H J Herrmann; D P Landau; F Leyvraz; H E Stanley; N Jan; Theor. Phys. Inst., St. Francis Xavier Univ., Antigonish, NS, Canada; A Coniglio; Theor. Phys. Inst., St. Francis Xavier Univ., Antigonish, NS, Canada; H J Herrmann; Theor. Phys. Inst., St. Francis Xavier Univ., Antigonish, NS, Canada; D P Landau; Theor. Phys. Inst., St. Francis Xavier Univ., Antigonish, NS, Canada; F Leyvraz; Theor. Phys. Inst., St. Francis Xavier Univ., Antigonish, NS, Canada; H E Stanley; Theor. Phys. Inst., St. Francis Xavier Univ., Antigonish, NS, Canada
Журнал:
Journal of Physics A: Mathematical and General
Дата:
1986-05-11
Аннотация:
The authors analyse the results of kinetic gelation and propose a diagram compatible with the existing data. They introduce the concept of 'limited' and 'full' universality. The former refers to systems with an identical subset of critical exponents; the latter refers to systems with an identical set of critical exponents. The evidence suggests that kinetic gelation and random percolation are in the same limited universality class. It appears that the concentration of initiators plays the role of an active parameter, similar to that of the interplane coupling in quasi-two-dimensional models.
380.7Кб