Автор |
A B Harris |
Дата выпуска |
1987-10-21 |
dc.description |
The author studies the threshold concentrations, P<sub>q</sub>, for critical behaviour at zero temperature in the correlation functions χ<sup>(2q)</sup> for an Ising spin glass in which nearest-neighbour interactions randomly assume the values +J, 0, and -J with respective probabilities p/2, 1-p and p/2. Here χ<sup>(q)</sup>≡σ <sub>j</sub>(s<sub>i</sub>s<sub>j</sub>)<sup>q</sup>)<sub>av</sub>, where ( ) denotes an average over the ground states for fixed configuration of J and ( )<sub>av</sub> an average over all such configurations. Due to frustration effects p<sub>c</sub><p<sub>2</sub><p<sub>4</sub><p<sub>6</sub>. . .<p<sub>infinity </sub>, where p<sub>c</sub> is the percolation threshold. Thus spin-glass theory with only χ<sup>(2)</sup> critical (at p=p<sub>2</sub>) applies and the critical exponents along the T=0 axis are the same as thermal critical exponents for p=1. When the values +J and -J are replaced by distributions of narrow width, the frustration is removed and percolation exponents are expected at p=p<sub>c</sub>. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
1/σ expansion for critical concentrations in the diluted spin glass |
Тип |
lett |
DOI |
10.1088/0305-4470/20/15/014 |
Print ISSN |
0305-4470 |
Журнал |
Journal of Physics A: Mathematical and General |
Том |
20 |
Первая страница |
L1011 |
Последняя страница |
L1016 |
Аффилиация |
A B Harris; Raymond & Beverly Sackler Fac. of Exact Sci., Tel Aviv Univ., Israel |
Выпуск |
15 |