Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор H J Giacomini
Автор C E Repetto
Автор O P Zandron
Дата выпуска 1991-10-07
dc.description The problem of finding integrals of motion of three-dimensional dynamical systems is analysed. The authors introduce a new type of direct method in the search of parameter values for which an integral of motion exists. This method consists in proposing an ansatz for the integral that explicitly shows the dependence with respect to one of the phase space coordinates of the system. They apply this procedure to the reduced three-wave interaction problem and to the Rabinovich system. For both models new integrals of motion are found.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Integrals of motion for three-dimensional non-Hamiltonian dynamical systems
Тип paper
DOI 10.1088/0305-4470/24/19/020
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 24
Первая страница 4567
Последняя страница 4574
Аффилиация H J Giacomini; IFIR, Rosario, Argentina
Аффилиация C E Repetto; IFIR, Rosario, Argentina
Аффилиация O P Zandron; IFIR, Rosario, Argentina
Выпуск 19

Скрыть метаданые