Автор |
O L de Lange |
Дата выпуска |
1991-02-07 |
dc.description |
An algebraic (representation-independent) analysis is presented for the Dirac oscillator in an angular momentum basis. The analysis is based on shift operators for energy and angular momentum, and it is similar to that for a non-relativistic isotropic harmonic oscillator. The shift operators generate all the eigenkets of the Dirac oscillator from a 'vacuum' ket. The shift operations yield energy eigenvalues and certain matrix elements. The relationship to the factorization method is discussed. |
Формат |
application.pdf |
Издатель |
Institute of Physics Publishing |
Название |
Algebraic properties of the Dirac oscillator |
Тип |
paper |
DOI |
10.1088/0305-4470/24/3/025 |
Print ISSN |
0305-4470 |
Журнал |
Journal of Physics A: Mathematical and General |
Том |
24 |
Первая страница |
667 |
Последняя страница |
677 |
Аффилиация |
O L de Lange; Dept. of Phys., Natal Univ., Pietermaritzburg, South Africa |
Выпуск |
3 |