Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор O L de Lange
Дата выпуска 1991-02-07
dc.description An algebraic (representation-independent) analysis is presented for the Dirac oscillator in an angular momentum basis. The analysis is based on shift operators for energy and angular momentum, and it is similar to that for a non-relativistic isotropic harmonic oscillator. The shift operators generate all the eigenkets of the Dirac oscillator from a 'vacuum' ket. The shift operations yield energy eigenvalues and certain matrix elements. The relationship to the factorization method is discussed.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Algebraic properties of the Dirac oscillator
Тип paper
DOI 10.1088/0305-4470/24/3/025
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 24
Первая страница 667
Последняя страница 677
Аффилиация O L de Lange; Dept. of Phys., Natal Univ., Pietermaritzburg, South Africa
Выпуск 3

Скрыть метаданые