Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Jean-P Nadal
Дата выпуска 1991-03-07
dc.description Recent studies of the information capacity in a sparsely coded memory net has led to some contradictory results. In the Willshaw model, where the couplings are binary (0 or 1), the maximal quantity of information that can be stored is 1n 2 approximately=0.69 bits per synapse. On the other hand a calculation a la Gardner (1988) for (0,1) couplings gives an upper bound for the maximal capacity of about 0.29 bits per synapse. In this study, the author considers two possible sources for this discrepancy. The first one is that the criteria for defining the maximal capacity are different (with or without a constraint of perfect errorless storage). The second one is a difference in the choice of the probability distribution of the random patterns used to compute this capacity. This analysis shows in particular that for the Willshaw model the maximal information capacity is much larger when the number of active neurons is exactly the same in every stored pattern, than when it is given only in average. In addition he gives an argument showing that this result may be generic, e.g., valid for any activity level and independent of the learning rule.
Формат application.pdf
Издатель Institute of Physics Publishing
Название Associative memory: on the (puzzling) sparse coding limit
Тип paper
DOI 10.1088/0305-4470/24/5/023
Print ISSN 0305-4470
Журнал Journal of Physics A: Mathematical and General
Том 24
Первая страница 1093
Последняя страница 1101
Аффилиация Jean-P Nadal; Lab. de Physique Stat., Ecole Normale Superieure, Paris, France
Выпуск 5

Скрыть метаданые